
Annealed MAP

Changhe Yuan

Decision Systems Laboratory
Intelligent Systems Program

University of Pittsburgh
Pittsburgh, PA 15260
cyuan@sis.pitt.edu

Tsai-Ching Lu

HRL Laboratories, LLC
Malibu, CA 90265

tlu@hrl.com

Marek J. Druzdzel

Decision Systems Laboratory
School of Information Sciences and

Intelligent Systems Program
University of Pittsburgh
Pittsburgh, PA 15260
marek@sis.pitt.edu

Abstract

Maximum a Posteriori assignment (MAP) is
the problem of finding the most probable in-
stantiation of a set of variables given the
partial evidence on the other variables in a
Bayesian network. MAP has been shown to
be a NP-hard problem [22], even for con-
strained networks, such as polytrees [18].
Hence, previous approaches often fail to yield
any results for MAP problems in large com-
plex Bayesian networks. To address this
problem, we propose AnnealedMAP algo-
rithm, a simulated annealing-based MAP al-
gorithm. The AnnealedMAP algorithm
simulates a non-homogeneous Markov chain
whose invariant function is a probability den-
sity that concentrates itself on the modes
of the target density. We tested this al-
gorithm on several real Bayesian networks.
The results show that, while maintaining
good quality of the MAP solutions, the An-

nealedMAP algorithm is also able to solve
many problems that are beyond the reach of
previous approaches.

1 Introduction

MAP is the problem of finding the most probable in-
stantiation of one set of variables given partial evi-
dence on the remaining variables in a Bayesian net-
work. One special case of MAP is the Most Probable
Explanation (MPE) problem. MPE is the problem of
finding the most probable instantiation of a set of vari-
ables given full evidence on the remaining variables.
Due to its simplicity, MPE has received much more
attention than MAP. However, practice tells us that
MAP has much greater value in real problems. For
instance, we often want to know the most probable

instantiation of some target nodes1 given the states
of some of the observable nodes in Bayesian networks.
Researchers have proposed various approaches to solve
the MAP problem [6, 7, 8, 19, 20]. The state of the art
MAP algorithm, proposed in a recent paper by Park
and Darwiche [20], is a branch-and-bound depth-first
search algorithm. It is an efficient algorithm, espe-
cially when the search spaces of the problems are not
too large. However, when we applied the algorithm
to MAP problems in some large real Bayesian net-
works, it failed to yield any result. Given that MAP
has been shown to be an NP-hard problem [22], this
is not surprising. Furthermore, MAP is NP-hard even
for constrained networks, such as polytrees [18].

In this paper, we propose the AnnealedMAP al-
gorithm, which uses Markov Chain Monte Carlo
(MCMC) methods to sample from the target distri-
bution p(x), and applies the simulated annealing tech-
nique to simulate a non-homogeneous Markov chain
whose invariant function is p1/Ti(X|E), which is a
probability density that concentrates itself on the
modes of p(x) as limi→∞ Ti = 0.

The remaining of this paper is organized as follows.
In Section 2, we define the MAP problem more for-
mally and analyze why it is difficult. We also outline
several existing approaches. In Section 3, we propose
the AnnealedMAP algorithm. First, we introduce
the MCMC methods. Second, we introduce the simu-
lated annealing (SA) technique, which is often used to
solve global optimization problem. After that, we com-
bine these two techniques into the AnnealedMAP

algorithm to solve the MAP problem in Bayesian net-
works. In Section 4, we present the results of applying
the AnnealedMAP algorithm to several real complex
Bayesian networks.

1In this paper, variable and node are used inter-
changeably, which is also the case for configuration and
instantiation.

2 Previous Work

Formally, the MAP problem in a Bayesian network is
defined as follows. Let X be the set of MAP nodes
whose most probable configuration we are interested
in. Let E be the set of evidence nodes. The remainder
of the nodes are denoted by Y . Let Z = X ∪ Y ∪ E.
Then, MAP is the instantiation that satisfies

x̂ = maxXp(X|E) . (1)

Using the law of total probability and the chain rule
for Bayesian networks, we have

x̂ = maxX

∑

Y

p(X,Y |E) (2)

= maxX

∑

Y

∏

Zi∈Z

p(Zi|PA(Zi)) , (3)

where PA(Zi) stands for the parents of node Zi. From
Equation 3, we can easily see the difference between
MAP and other inference problems. In computing
posterior marginal distributions, we only have sum-
mations. Thus, we can commute summations over dif-
ferent variables in order to minimize the width of an
elimination order. The width of an elimination order
is defined as the size of the largest clique minus 1 in
a junction tree constructed based on the elimination
order.2 Similarly, we have only maximizations in a
MPE problem. Once again, any permutation of the
maximizations over different variables is admissible.
However, a MAP problem has both maximizations
and summations. Since summation and maximization
do not commute, we are required to do summations
first. An elimination order is valid [18] if maximiz-
ing a variable out of a potential never happens before
summing over another variable on the same potential.
A MAP problem is subject to the constrained width
of the best valid elimination order. It is still possible
to find valid orderings that interleave summation and
maximization variables. However, Park shows that
there is always an elimination order with the same
width in which all the maximizations are done last,
hence, there is no benefit of interleaving summations
and maximizations [18].

To solve the MAP problem for Bayesian networks,
researchers have proposed various approaches, all of
which are trying to sidestep its inherent complexity.
The approach in [6] uses genetic algorithms to approx-
imate the best configuration of the MAP variables.

2The width of the best elimination order is called the
network treewidth. The constrained width is defined as
the width of the best constrained elimination order with
respect to a specific MAP problem.

Starting from an initial guess, the algorithm takes ac-
tions like crossover and mutation to explore the space
of possible instantiations. It stops when a fixed num-
ber of iterations have been executed and then choose
the best instantiation as the MAP solution. Dechter
and Rish [8] propose a general scheme for probabilis-
tic inference: Mini-buckets. A full mini-bucket algo-
rithm is subject to the size of the largest potential
created, which is equivalent to the constrained width
of the MAP problem. Hence, the mini-bucket method
sets a limit on the size of potentials. Whenever the
size of a potential exceeds the limit, the mini-bucket
method will create an approximate version of it in-
stead. Park and Darwiche [19] propose an approach
using local search to solve a MAP problem. The algo-
rithm starts from an initial guess and then iteratively
improves the solution by moving to a better neighbor.
In a later paper [20], the authors improve the local
search algorithm using a branch-and-bound depth-first
algorithm. The advantage of the improved algorithm
is that it provides a guarantee on the optimality of the
obtained solution.

All the above approaches alleviate to some degree the
complexity of the original problems. However, in face
of large complex models, they often fail to provide
good results, if any: the approach in [6] does not pro-
vide any guidance to explore the more probable spaces;
the quality of the results of the mini-bucket method
largely depends on the limit of the potential size; the
algorithms in [19, 20] reduce the complexity of the
MAP problems to treewidths, but they are still sub-
ject to the exponential search spaces introduced in the
problems. In this paper, we propose a Monte Carlo
sampling based MAP algorithm, which not only re-
duces the complexity of the problems by sampling,
but also cuts the search space by simulated anneal-
ing. Similar ideas have been applied to improving the
results in [6] and to image restoration in Markov Ran-
dom Fields (MRF) [7, 10].

3 The AnnealedMAP Algorithm

One effective way of dealing with the complexity of
an inference problem is to use Monte Carlo sampling
algorithms. Sampling-based algorithms are inevitably
slower than exact algorithms when the problems at
hand are easy; however, they largely reduce the com-
plexity of the problems by trading off some precision.
When the problems become too complex, they may
be the only feasible approaches. Furthermore, they
have the nice property of being anytime algorithms.
In this section, we propose the AnnealedMAP al-
gorithm, which integrates the Markov Chain Monte
Carlo methods and the simulated annealing technique
to solve MAP problems in Bayesian networks.

This section is organized as follows. First, we intro-
duce the Markov Chain Monte Carlo methods. Sec-
ond, we introduce the simulated annealing technique,
which is often used to solve global optimization prob-
lems. After that, we discuss how to combine them
into the AnnealedMAP algorithm, which aims to
solve the MAP problems in Bayesian networks. Fi-
nally, since annealing schedules are so important for
the simulated annealing technique, we discuss the an-
nealing schedule that we are using.

3.1 Markov Chain Monte Carlo Methods

MCMC methods [4] are techniques to sample from the
target density p(x) by constructing a Markov chain
with p(x) as the invariant function. Let T be the tran-
sition matrix of the constructed Markov chain. It has
been shown that for any starting point, the chain will
converge to the invariant function p(x) if T satisfies
two properties:

1. Irreducibility: There is a positive transition prob-
ability between any two states within a limited
number of steps.

2. Aperiodicity: The chain will not be trapped in
cycles.

One way to design a Markov chain with transition
matrix T that has the target density p(x) as the in-
variant function is to make sure that p(x∗)T (x|x∗) =
p(x)T (x∗|x), which is known as the detailed balance
condition. However, this condition is only sufficient
but not necessary.

The Metropolis-Hasting (MH) algorithm is the most
popular MCMC method. The Markov Chain of the
MH algorithm moves to a new state x∗ with ac-

ceptance probability A(x, x∗) = min{1, p(x∗)q(x|x∗)
p(x)q(x∗|x) },

where q(x∗|x) is the proposal distribution. It is easy
to show that the transition kernel defined by q(x∗|x)
satisfies the detailed balance condition. Gibbs sam-
pling is one special case of MH algorithm. Suppose
we have n-dimensional vector X = x1, x2, ..., xn and
the expressions for the full conditionals p(xj |x−j) for
each j, where X−j = x1, ..., xj−1, xj+1, ..., xn. Gibbs
sampling uses the following proposal distribution for
j = 1, ..., n

q(x∗|x) =

{
p(x∗

j |x−j), if x∗
−j = x−j ;

0, otherwise .

It is easy to verify that acceptance probability is al-
ways 1 for Gibbs sampling.

3.2 Simulated Annealing for Global

Optimization

Now we already have the techniques to sample from
the target density p(x). Moreover, if we want to find
its global maximum, we can use simulated annealing
technique [13] to simulate a non-homogeneous Markov
chain whose invariant function is no longer p(x), but

pi(x) ∝ p1/Ti(x) , (4)

Where limi→∞ Ti = 0. Under weak regularity assump-
tion, p∞(x) is a probability density that concentrates
itself on the modes of p(x).

3.3 The AnnealedMAP Algorithm

Now let us look at the MAP problem in a Bayesian
network. We want to find the most probable con-
figuration of one set of variables X given another
set of evidence variables E in the Bayesian network,
i.e., maxXp(X|E). Given the technique we described
above, it is sufficient to simulate a Markov chain whose
invariant function is p1/Ti(X|E). We use the same
proposal distribution as Gibbs sampling

qi(x
∗|x) =

{
p(x∗

j |x−j), if x∗
−j = x−j ;

0, otherwise .

The corresponding acceptance probability is

A(x∗|x) = min{1,
p1/Ti(x∗|E)q(x|x∗)

p1/Ti(x|E)q(x∗|x)
}

= min{1,
p1/Ti(x∗

j , x
∗
−j |E)p(xj |x

∗
−j , E)

p1/Ti(xj , x−j |E)p(x∗
j |x−j , E)

}

= min{1,
p1/Ti(x∗

j |x
∗
−j , E)p1/Ti(x∗

−j |E)p(xj |x
∗
−j , E)

p1/Ti(xj |x−j , E)p1/Ti(x−j |E)p(x∗
j |x−j , E)

}

= min{1,
p1/Ti−1(x∗

j |x−j , E)

p1/Ti−1(xj |x−j , E)
} .

Thus, calculating the acceptance probability reduces
to the local calculation of the posterior distribution of
a single node. When Ti is 1, the above algorithm is
just Gibbs sampling with invariant function p(X|E).
By cooling down Ti to 0, we eventually get a density
function which concentrates itself on the global max-
ima of p(X|E).

To calculate p(xj |x−j , E), we need to do inference in
a Bayesian network. Since exact inference is feasible
in the Bayesian networks in our experiments, we use
the exact clustering algorithm [15] powered by rele-
vance reasoning [16]. If inference is hard, we can re-
sort to approximate solutions. In such situations, we

recommend to use the Loopy Belief Propagation algo-
rithm (LBP) [17].

Another important issue is how to initialize the
Markov chain. Although theoretically the starting
point is not important for sampling from a target dis-
tribution with a Markov chain, a good starting point
helps a lot when searching for the global maximum of
the distribution. In our experiments, we choose the se-
quential initialization method, which chooses each time
a MAP node and instantiate it to its most probable
state conditioning on the evidence and MAP nodes
already initialized.

Algorithm: AnnealedMAP

Input: Bayesian network B, a set of MAP variables
X, and a set of evidence variables E;
Output: The most probable configuration of X.

1. Initialize X(0), T0, and set i = 0.

2. while stopping rule is not satisfied:

3. for each variable xj in the MAP set X do:

4. Sample u ∼ U[0,1].

5. Sample x∗
j ∼ p(x∗

j |x
i
−j , E)

6. if u < min{1,
p1/Ti−1(x∗

j |x−j ,E)

p1/Ti−1(xj |x−j ,E)
}

xi+1
j = x∗

j .

else

xi+1
j = xi

j .

7. Keep track of the best configuration so far.

end for

8. Set Ti+1 according to a chosen annealing
schedule.

9. i← i + 1.

end while

10. Output the best configuration found and its
probability.

Figure 1: The AnnealedMAP algorithm.

Given the above discussion, we outline the An-

nealedMAP algorithm in Figure 1. When the an-
nealing schedule is good enough, we can usually take
the final configuration as the output. However, since
the probability of a configuration can be calculated as
a byproduct of the acceptance probability, we can keep
track of the best configuration that we have visited. To
see this, we have

p(x∗|E) = p(x∗
j , x

∗
−j |E)

= p(x−j |E)p(x∗
j |x−j , E)

= p(x|E)
p(x∗

j |x−j , E)

p(xj |x−j , E)
.

3.4 Annealing Schedules

While simulated annealing can theoretically converge
to the global optimum with stationary distributions,
this requires exponential-time execution of the anneal-
ing algorithm [13]. In practice, only a short annealing
schedule can be used. The annealing schedule that
we are using is the geometric cooling, where the new
temperature (T ′) is computed using

T ′ = αT , (5)

where α (0 < α < 1) is the cooling rate, which usu-
ally takes a value between 0.8 and 0.99. We stop the
annealing algorithm when there has been no improve-
ment for a certain number of iterations. This annealing
schedule has the advantage of being well understood,
having a solid theoretical foundation, and being the
most widely used annealing schedule. However, the
schedule also has the drawback that once it drops into
a local maximum, it is unlikely to be able to escape it.
To overcome this drawback, we empower the geomet-
ric cooling schedule with another technique, which is
called reheating as a function of cost (RFC) [9]. This
technique involves calculating the specific heat (CH),
which is a measure of the variance of the cost of the
values of states at a given temperature. Generally, be-
fore the annealing algorithm reaches the temperature
T (CH) when the specific heat is maximal, it is still
creating the super-structure of the solution by tak-
ing global random walks. After the algorithm reaches
T (CH), it begins to solve the sub-problems. By re-
heating the system to a temperature above T (CH), we
can escape the local maximum and possibly find better
solutions. The specific heat is defined as

CH(T) =
σ2(T)

T 2
, (6)

where σ2(T) is the variance of the cost, and T is the
current temperature. The score in our experiments
is defined as the discrepancy between the current best
solution and the current solution. After there has been
no improvement for a certain number of iterations, we
reheat the system to the new temperature

T = K ∗ Cb + T (Cmax
H) , (7)

where K is a tunable parameter and Cb is the current
best cost. We can also adopt more complicated anneal-
ing schedules, such as adaptive cooling. The idea is to

keep the system close to equilibrium by cooling slower
when the specific heat is large. Readers who are inter-
ested in different annealing techniques can refer to [9]
for more details.

4 Experimental Results

To test the AnnealedMAP algorithm, we studied its
performance on many MAP problems in real Bayesian
networks. We compare our results to the algorithms
in [19, 20], which are the current state of the art MAP
algorithms. We refer to these algorithms as the P-

Loc [19] and P-Sys [20] algorithms respectively. We
implemented our algorithm in C++ and performed our
tests on a 2.4 GHz Pentium IV with 1GB memory
Windows XP computer.

4.1 Experimental Design

The Bayesian networks that we used include Alarm [5],
Barley [14], CPCS [21], Diabetes [2], Hailfinder [1],
Munin [3], Pathfinder [11], and Win95pts [12], some
of which are constructed for diagnosis. We also tested
the algorithms on two very large proprietary diagnos-
tic networks built at the HRL Laboratories (HRL1 and
HRL2). The statistics for these networks are summa-
rized in Table 1. Although the network Barley does
not have many nodes or arcs, it has a node with 67
states; hence, the P-Sys algorithm failed to give us
any results. We also anticipated that Diabetes will
be the most difficult for inference algorithms because
it has a relatively large ratio between the number of
nodes versus the number of arcs.

Group Network #Nodes #Arcs
Alarm 37 46
CPCS 179 239

1 Hailfinder 56 66
Pathfinder 135 195
Win95pts 76 112

Munin 1,041 1,397
2 Barley 48 84

Diabetes 413 602
3 HRL1 1,999 3,112

HRL2 1,528 2,492

Table 1: Statistics for the Bayesian networks that we
are using.

For each network, we randomly generated 20 MAP
problems and ran the above three algorithms on them.
In each MAP problem, we randomly chose 20 MAP
variables among the root nodes or all the root nodes
if their number was less than 20. We chose the same
number of evidence nodes from the leaf nodes, or all
of them if there were fewer than 20 leaf nodes. To

set evidence, we sample from the prior of a Bayesian
network in its topological order and cast the states of
the sample to the evidence nodes.3

Figure 2: Plot of the error rate against the number of
waiting iterations before reheating.

There are several tunable parameters in the An-

nealedMAP algorithm. We set the initial temper-
ature to be 0.99, the cooling rate of the geomet-
ric cooling to be 0.8, and the constant K in Equa-
tion 7 to be 0.1 in order that the temperature will
not be reset too much above T (Cmax

H). To initialize
the Markov chain, we instantiated the MAP nodes se-
quentially to their most likely states. We did some
experiments to select the number of waiting iterations
before reheating. Figure 2 is a plot of the error rate
against the number of waiting iterations for several
Bayesian networks. There is no single number that
is optimal for all the networks. We set the number
of waiting iterations in all our experiments to be 10
and stopped the algorithm after there had been no
improvement for 20 iterations. In other words, we
gave the system another chance to reheat before it
stopped. For the P-Sys algorithm, we set the time
limit to be 50 minutes. For the P-Loc algorithm, we
chose the default settings: search=TABOO, initializa-
tion=SEQUENTIAL, and maxsteps=25.

4.2 Results for the First Group of Networks

In the first experiment, we ran the P-Loc, P-Sys,
and AnnealedMAP algorithms on all the networks
in the first group. The P-Sys algorithm reported that
it found all the optimal solutions. Table 2 reports the
number of MAP problems that are solved correctly by
the P-Loc and AnnealedMAP algorithms. They
both performed well in these networks. The P-Loc

was able to find all the optimal solutions, while the
AnnealedMAP algorithm missed only one case on

3We would like to thank Greg Cooper for this idea.

the Hailfinder network. The found solution was actu-
ally only slightly inferior to the optimal solution: the
ratio between their probabilities was 0.997. Search al-
gorithms are able to find optimal solutions because
they are deterministic algorithms: they will always
choose a better solution if they can find one. However,
the AnnealedMAP algorithm only selects a solution
with some probability. If a solution is only slightly bet-
ter than another one, the AnnealedMAP algorithm
will choose the better one with a higher probability,
but it is not guaranteed. Our initial experiments show
that combining greedy search into AnnealedMAP

leads to further improvement, which we omit due to
page limit.

P-Loc A-MAP

Alarm 20 20
CPCS 20 20
Hailfinder 20 19
Pathfinder 20 20
Win95pts 20 20
Munin 20 20

Table 2: The number of cases that are solved correctly
out of 20 random cases for the first group of networks.

Besides precision of the results, we also care about
the efficiency of the algorithms. Table 3 reports the
average running time of the three algorithms on the
first group of networks. The median running times
are similar. The AnnealedMAP, P-Loc and P-Sys

algorithms showed similar efficiency on all the net-
works except the Munin network. The Munin net-
work has many more nodes and arcs than other net-
works, hence its state space is much larger. The An-

nealedMAP algorithm drastically reduces the search
space by guided random walk, hence it was much faster
on the Munin network.

P-Sys P-Loc A-MAP

Alarm 0.058 0.055 0.068
CPCS 0.107 1.132 0.169
Hailfinder 4.007 0.145 0.397
Pathfinder 0.150 0.125 0.080
Win95pts 0.089 0.074 0.183
Munin 50.636 193.226 21.326

Table 3: Average running time in seconds of the P-

Sys, P-Loc, and AnnealedMAP algorithms on the
first group of networks.

4.3 Results for the Second and Third Group

The second and third group of networks consist of sev-
eral large and complex Bayesian networks. The P-Sys

did not produce results in a reasonable time for the sec-

ond group of networks. Therefore, we compared the
results of the AnnealedMAP algorithm against those
of the P-Loc algorithm. Table 4 lists the number of
cases that were solved differently between them and
the number of cases that the AnnealedMAP algo-
rithm produced better results in terms of probability.
The two algorithms roughly agreed with each other
on the Diabetes network, while differed a lot on the
Barley network.

#Different #A-MAP leads
Barley 16 5
Diabetes 4 2

Table 4: The number of cases that are solved differ-
ently from P-Loc algorithm by AnnealedMAP.

To take a closer look, we report the average and me-
dian ratios between the probabilities of the results of
the AnnealedMAP algorithm and the P-Loc algo-
rithm for the cases that they differed in Table 5. Over-
all, the P-Loc algorithm performed slightly better on
the Barley and Diabetes networks. However, the qual-
ity of the MAP solutions were very close.

Ratio Median
Barley 0.96 0.954
Diabetes 0.996 0.997

Table 5: Average ratio between the results of An-

nealedMAP to P-Loc.

For the third group of Bayesian networks, the An-

nealedMAP algorithm found all the optimal solu-
tions for the randomly generated 20 cases, while the
P-Loc algorithm failed to produce any result. The
reason why the P-Loc algorithm fails is that it does
not use evidence-based pruning while the P-Sys and
AnnealedMAP algorithms do.4 The HRL1 and
HRL2 are extremely large two-layer Bayesian net-
works. When only 20 MAP and evidence nodes are set,
the P-Sys and AnnealedMAP algorithms will break
the networks into pieces by evidence-based pruning
and solve them separately. The consequences are that
they can both find the optimal solutions efficiently.

Table 6 reports the average running time of the P-Sys,
P-Loc and AnnealedMAP algorithms on the second
and third groups of networks. The results again show
that the AnnealedMAP algorithm is more efficient
on large networks.

4.4 Results for Incremental Evidence Test

Out last experiment focused on the robustness of the
three algorithms to the number of nodes in the MAP

4James Park, personal communication.

P-Sys P-Loc A-MAP

Barley – 87.261 45.956
Diabetes – 318.292 245.569
HRL1 37.034 – 3.503
HRL2 28.469 – 8.002

Table 6: Average running time in seconds of the P-

Sys, P-Loc, and AnnealedMAP algorithms on the
second and third groups of Bayesian networks.

set and the evidence set. In this experiment, we gen-
erated MAP problems with an increasing number of
MAP and evidence nodes and ran the P-Sys, P-Loc,
and AnnealedMAP algorithms on these cases. We
chose the Munin network for this experiment because
only this network has suitable numbers of root nodes
and leaf nodes, 183 and 259 respectively, and we were
able to run all three algorithms on it. The P-Sys re-
ported that it found all the optimal solutions before
it broke down after we set more than 130 MAP and
evidence nodes. The P-Loc algorithm found the same
solutions before it began to produce results with prob-
ability 0 after we set more than 110 MAP and evidence
nodes. The AnnealedMAP also found the optimal
solutions for the cases whose optimal results are avail-
able from the P-Sys algorithm. However, the An-

nealedMAP algorithm was able to solve all the cases
that we generated, even after we set all the root and
leaf nodes to be the MAP and evidence nodes respec-
tively. The running time for all the cases are shown in
Figure 3. The AnnealedMAP algorithm turned out
again to be more efficient than the P-Sys and P-Loc

algorithms. It seems that the AnnealedMAP algo-
rithm extends the class of MAP problems that can be
solved.

Figure 3: Plot of the running time of the An-

nealedMAP, P-Sys, and P-Loc algorithms when
increasing the number of evidence nodes on the Munin
network.

5 Discussion

MAP problems in Bayesian networks are hard because
they are not only subject to the complexity of the
model (treewidth), but also subject to the complex-
ity introduced by the specific problems (constrained
width). The AnnealedMAP algorithm tries to in-
tegrate MCMC methods with simulated annealing in
order to simulate a non-homogeneous Markov chain
that converges to a distribution that concentrates it-
self on the modes of the target distribution. By tak-
ing guided random walks using the Markov chain, the
AnnealedMAP algorithm largely reduces the search
space of a MAP problem. Our test results show that
the AnnealedMAP algorithm is more efficient than
the state of the art algorithms, the P-Sys and P-

Loc algorithms, on MAP problems in large complex
networks. However, the AnnealedMAP algorithm
trades off some accuracy for the efficiency. When the
problems are not too difficult, the AnnealedMAP

algorithm performed slightly worse than the P-Sys

and P-Loc algorithms. However, our experiments
show that further improvements for AnnealedMAP

can be achieved by adjusting the annealing speed, the
number of iterations carried out with the same tem-
perature, and the number of iterations before reheat-
ing and stopping. Combining greedy search into An-

nealedMAP also leads to additional improvement.
When the problems become so complex that they are
beyond the reach of the P-Sys and P-Loc algorithms,
the AnnealedMAP algorithm becomes the only fea-
sible solution. Therefore, the AnnealedMAP algo-
rithm extends the class of MAP problems that can be
solved.

6 Acknowledgements

This research was supported by the Air Force Of-
fice of Scientific Research grant F49620–03–1–0187.
We thank Tomek Sowinski and several anonymous re-
viewers of the UAI04 conference for several insight-
ful comments that led to improvements in the pa-
per, and we thank Adnan Darwiche and Keith Cas-
cio for providing us with an efficient implementa-
tion of the P-Sys and P-Loc algorithms within the
SamIam software and for their assistance in our tests
of SamIam. All experimental data have been obtained
using SMILE, a Bayesian inference engine developed
at the Decision Systems Laboratory and available at
http://www.sis.pitt.edu/∼genie.

References

[1] B. Abramson, J. Brown, W. Edwards, A. Mur-
phy, and R. Winkler. Hailfinder: A Bayesian sys-

tem for forecasting severe weather. International
Journal of Forecasting, 12(1):57–72, 1996.

[2] S. Andreassen, R. Hovorka, J. Benn, K. G. Ole-
sen, and E. R. Carson. A model-based approach
to insulin adjustment. In M. Stefanelli, A. Has-
man, M. Fieschi, and J. Talmon, editors, Pro-
ceedings of the Third Conference on Artificial In-
telligence in Medicine, pages 239–248. Springer-
Verlag, 1991.

[3] S. Andreassen, F. V. Jensen, S. K. Ander-
sen, B. Falck, U. Kjærulff, M. Woldbye, A. R.
Sørensen, A. Rosenfalck, and F. Jensen. MUNIN
— an expert EMG assistant. In J. E. Desmedt, ed-
itor, Computer-Aided Electromyography and Ex-
pert Systems, chapter 21. Elsevier Science Pub-
lishers, Amsterdam, 1989.

[4] C. Andrieu, N. de Freitas, A. Doucet, and M. Jor-
dan. An introduction to MCMC for machine
learning. Machine Learning, 350:5–43, 2003.

[5] I. Beinlich, G. Suermondt, R. Chavez, and
G. Cooper. The ALARM monitoring system: A
case study with two probabilistic inference tech-
niques for belief networks. In In Proc. 2’nd Eu-
ropean Conf. on AI and Medicine, pages 38:247–
256, Springer-Verlag, Berlin, 1989.

[6] L. de Campos, J. Gamez, and S. Moral. Partial
abductive inference in Bayesian belief networks
using a genetic algorithm. Pattern Recognition
Letters, 20(11-13):1211–1217, 1999.

[7] L. de Campos, J. Gamez, and S. Moral. Partial
abductive inference in bayesian belief networks by
simulated annealing. International Journal of Ap-
proximate Reasoning, 27:3:263–283, 2001.

[8] R. Dechter and I. Rish. Mini-buckets: A general
scheme for approximating inference. Journal of
ACM, 50(2):1–61, 2003.

[9] M. A. S. Elmohamed, P. Coddington, and G. Fox.
A comparison of annealing techniques for aca-
demic course scheduling. Lecture Notes in Com-
puter Science, 1408:92–114, 1998.

[10] S. Geman and D. Geman. Stochastic relaxations,
Gibbs distributions and the Bayesian restoration
of images. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 6(6):721–742, 1984.

[11] D. Heckerman. Probabilistic similarity networks.
Networks, 20(5):607–636, Aug. 1990.

[12] D. Heckerman, J. Breese, and K. Rommelse.
Decision-theoretic troubleshooting. Communica-
tions of the ACM, 38:49–57, 1995.

[13] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,
220, 4598:671–680, 1983.

[14] K. Kristensen and I. Rasmussen. The use of a
Bayesian network in the design of a decision sup-
port system for growing malting barley without
use of pesticides. Computers and Electronics in
Agriculture, 33:197–217, 2002.

[15] S. L. Lauritzen and D. J. Spiegelhalter. Lo-
cal computations with probabilities on graphical
structures and their application to expert sys-
tems. Journal of the Royal Statistical Society,
Series B (Methodological), 50(2):157–224, 1988.

[16] Y. Lin and M. J. Druzdzel. Relevance-based
sequential evidence processing in bayesian net-
works. In Proceedings of the Uncertain Reason-
ing in Artificial Intelligence track of the FLAIRS-
98, pages 446–450, AAAI Press/The MIT Press,
Menlo Park, CA, 1998.

[17] K. Murphy, Y. Weiss, and M. Jordan. Loopy be-
lief propagation for approximate inference: An
empirical study. In Proceedings of the Fifteenth
Annual Conference on Uncertainty in Artificial
Intelligence (UAI–99), pages 467–475, San Fran-
cisco, CA, 1999. Morgan Kaufmann Publishers.

[18] J. D. Park. MAP complexity results and ap-
proximation methods. In Proceedings of the 18th
Conference on Uncertainty in Artificial Intelli-
gence(UAI), pages 388–396, Morgan Kaufmann
Publishers San Francisco, California, 2002.

[19] J. D. Park and A. Darwiche. Approximating MAP
using local search. In Proceedings of the 17th
Conference on Uncertainty in Artificial Intelli-
gence(UAI), pages 403–410, Morgan Kaufmann
Publishers San Francisco, California, 2001.

[20] J. D. Park and A. Darwiche. Solving MAP ex-
actly using systematic search. In Proceedings of
the 19th Conference on Uncertainty in Artificial
Intelligence(UAI), pages 459–468, Morgan Kauf-
mann Publishers San Francisco, California, 2003.

[21] M. Pradhan, G. Provan, B. Middleton, and
M. Henrion. Knowledge engineering for large be-
lief networks. In Proceedings of the Tenth An-
nual Conference on Uncertainty in Artificial In-
telligence (UAI–94), pages 484–490, San Mateo,
CA, 1994. Morgan Kaufmann Publishers, Inc.

[22] S. E. Shimony. Finding MAPs for belief networks
is NP-hard. Artificial Intelligence, 68:399–410,
1994.

