Artificial Intelligence

Heuristic Search

(Ch. 3.5-6)
Best-first search

• Idea: use an evaluation function $f(n)$ for each node
 – estimate of “promisingness”

→ Expand the most promising unexpanded node

• Implementation:
 Order the nodes in fringe in decreasing order of promisingness

• Special cases:
 – greedy best-first search
 – A^* search
Greedy best-first search

- Evaluation function $f(n) = h(n)$ (heuristic)
 = estimate of cost from n to goal

- e.g., $h_{SLD}(n) =$ straight-line distance from n to Bucharest

- Greedy best-first search expands the node that appears to be closest to goal
Romania with step costs in km

<table>
<thead>
<tr>
<th>City</th>
<th>Distance (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Dobreta</td>
<td>242</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
</tr>
<tr>
<td>Fagaras</td>
<td>178</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>77</td>
</tr>
<tr>
<td>Hirsova</td>
<td>151</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Neamt</td>
<td>234</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>98</td>
</tr>
<tr>
<td>Rimnicu Vilcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Urziceni</td>
<td>80</td>
</tr>
<tr>
<td>Vaslui</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
Greedy best-first search example

- Arad
 - 366
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example
Properties of greedy best-first search

- Complete?
 - not
 - (finite number of nodes < O(n^2))
- Optimal?
 - not
- Time?
 - expr
- Space?
A* search

- **Idea:** avoid expanding paths that are already expensive
- **Evaluation function** \(f(n) = g(n) + h(n) \)
 - \(g(n) \) = cost so far to reach \(n \)
 - \(h(n) \) = estimated cost from \(n \) to goal
 - \(f(n) \) = estimated total cost of path through \(n \) to goal
A* search example
A* search example

- Sibiu: 393 = 140 + 253
- Timisoara: 447 = 118 + 329
- Zerind: 449 = 75 + 374
A* search example
A* search example
A* search example
Admissible heuristics

• A heuristic $h(n)$ is admissible if for every node n, $h(n) \leq h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n.

• An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic.

• Example: $h_{SLD}(n)$ (never overestimates the actual road distance)
Optimality of A^*

- **Theorem:** If $h(n)$ is admissible, A^* guarantees to be optimal
Optimality of A*

- Lemma: A* expands nodes in order of increasing f value
- Gradually adds "f-contours" of nodes
- Contour i has all nodes with $f=f_i$, where $f_i < f_{i+1}$
Pseudo code of A* Algorithm

create the open list of nodes, initially containing only starting node
create the closed list of nodes, initially empty
while (we have not reached our goal) {
 consider the best node in the open list (the node with the lowest f value)
 if (this node is the goal) {
 then we're done;
 } else {
 move the current node to the closed list and consider all of its neighbors;
 for (each neighbor) {
 if (this neighbor is in the closed list and our current g value is lower) {
 move the node from closed list to open list;
 update the neighbor with the new, lower, g value;
 change the neighbor's parent to our current node;
 } else if (this neighbor is in the open list and our current g value is lower) {
 update the neighbor with the new, lower, g value;
 change the neighbor's parent to our current node;
 } else this neighbor is not in either the open or closed list {
 add the neighbor to the open list and set its g value;
 }
 }
 }
}
Properties of A*

• Complete? yes
• Optimal? yes
• Time? yes
• Space?
A heuristic is consistent (monotonic) if for every node n, every successor n' of n generated by any action a,

$$h(n) \leq c(n,a,n') + h(n')$$

If h is consistent, $f(n) \leq f(n')$.
Optimality of A*

- **Theorem:** If $h(n)$ is consistent, A* guarantees to find an optimal path without reexpanding nodes
Example

Graph with nodes A, B, C, D, E, F, G and edges with weights:

- S to A: 2
- A to B: 1
- B to C: 4
- D to E: 2
- E to F: 4
- F to G: 3
- S to G: 11.0
- D to F: 8.9
- E to F: 6.9
- A to G: 10.4
- B to G: 6.7
- C to G: 4.0
A* Algorithm in action
Depth-first Branch and Bound Search

• Although A* guarantees to generate no more nodes than any other optimal algorithm, its space requirement can be prohibitive for large search problems.

• Depth-first search algorithm can be enhanced to utilize heuristic
 – So called Depth-first Branch and Bound Search
 – Uses heuristic functions to bound solution quality, and only expand nodes that can still lead to solutions better than the incumbent.
Depth-first Branch and Bound Search

Initialize:
Let open list \(Q = \{S\} \)
Let closed list \(C = \{\} \)
\(L \leftarrow \infty \) // score of best solution so far
While \(Q \) is not empty
 pull \(Q_1 \), the first element in \(Q \)
 if \(Q_1 \) is a goal compute the cost of the solution and update
 \(L \leftarrow \text{minimum between new cost and old cost} \)
 else
 \(\text{child_nodes} = \text{expand}(Q_1) \),
 For each child node \(n \) do:
 Eliminate \(\text{child_nodes} \) which represent simple loops by checking against the closed list,
 evaluate \(f(n) \).
 If \(f(n) \) is greater than \(L \), discard \(n \).
 end-for
 Put remaining \(\text{child_nodes} \) on top of queue in the order of their evaluation function, \(f \).
 end
Continue
Properties of Branch-and-Bound

- Complete?
- Optimal?
- Time?
- Space?
Iterative Deepening A* (IDA*)

- Extend iteratively deepening search by
 - Using depth-first branch and bound
 - Updating the search limit according heuristic evaluations

- Properties:
 Guarantee to find an optimal solution
 time: exponential, like A*
 space: linear, like B&B.
Iterative Deepening A* (IDA*)

- **Pseudocode:**

 Initialize: $f \leftarrow$ the evaluation function of the start node
 until goal node is found

 Loop:

 Do Branch-and-bound with upper-bound L equal current evaluation function

 Increment evaluation function to next contour level

 (Update evaluation function to the minimum f-value which exceeded f among states which were generated)

 end

 continue

 open nodes
Relationships among search algorithms

Depth first (LIFO ordering)

$\hat{f} = \text{depth}$ (Breadth first)

$\hat{h} = 0$ (Uniform cost)

$\hat{h} \leq h$

A*

$\hat{f} = \hat{g} + \hat{h}$ (Best-first search)

(Generic graph-search algorithms)
Admissible heuristics

E.g., for the 8-puzzle:

- \(h_1(n) = \) number of misplaced tiles
- \(h_2(n) = \) Manhattan distance

\[h_1(S) = 8 \]
\[h_2(S) = 3 + 1 + 2 + 2 + 3 + 2 + 2 + 3 \]
Dominance

• If $h_2(n) \geq h_1(n)$ for all n (both admissible) then h_2 dominates h_1

• h_2 is better for search

• Typical search costs (average number of nodes expanded):

 • $d=12$

 IDS = 3,644,035 nodes
 $A^*(h_1) = 227$ nodes
 $A^*(h_2) = 73$ nodes

 • $d=24$

 IDS = too many nodes
 $A^*(h_1) = 39,135$ nodes
 $A^*(h_2) = 1,641$ nodes
Combination of Multiple Heuristics

- Given any admissible heuristics h_a, h_b,
 \[h(n) = \max(h_a(n); h_b(n)) \]
 is also admissible and dominates h_a, h_b
Relaxed problems

• A problem with fewer restrictions on the actions is called a relaxed problem
• The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
• If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution
• If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution