Artificial Intelligence

Heuristic Search
(Ch. 3.5-6)
Best-first search

• Idea: use an evaluation function $f(n)$ for each node
 – estimate of “promisingness”

→ Expand the most promising unexpanded node

• Implementation:
 Order the nodes in fringe in decreasing order of promisingness

• Special cases:
 – greedy best-first search
 – A* search
Greedy best-first search

- Evaluation function $f(n) = h(n)$ (heuristic)
 - = estimate of cost from n to $goal$

- e.g., $h_{SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest}$

- Greedy best-first search expands the node that appears to be closest to goal
Romania with step costs in km

Straight-line distance to Bucharest
- Arad 366
- Bucharest 0
- Craiova 160
- Dobrota 242
- Eforie 161
- Fagaras 178
- Giurgiu 77
- Hirsova 151
- Iasi 226
- Lugoj 244
- Mehedia 241
- Neamt 234
- Oradea 380
- Pitesti 98
- Rimnicu Vilcea 193
- Sibiu 253
- Timisoara 329
- Urziceni 80
- Vaslui 199
- Zerind 374
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example
Properties of greedy best-first search

- Complete?
- Optimal?
- Time?
- Space?
A* search

- **Idea:** avoid expanding paths that are already expensive
- **Evaluation function** $f(n) = g(n) + h(n)$
 - $g(n)$ = cost so far to reach n
 - $h(n)$ = estimated cost from n to goal
 - $f(n)$ = estimated total cost of path through n to goal
A* search example

- Arad
- $366 = 0 + 366$
A* search example

- Sibiu: 393 = 140 + 253
- Timisoara: 447 = 118 + 329
- Zerind: 449 = 75 + 374
A* search example

Diagram showing a graph with cities as nodes and distances as edges. Cities include Arad, Sibiu, Timisoara, Zerind, Fagaras, Oradea, and Rimnicu Vilcea. Distances are calculated as sums of direct travel distances.
A* search example
A* search example
A* search example
Admissible heuristics

- A heuristic \(h(n) \) is admissible if for every node \(n \),
 \[h(n) \leq h^*(n), \]
 where \(h^*(n) \) is the true cost to reach the goal state from \(n \).

- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic.

- Example: \(h_{SLD}(n) \) (never overestimates the actual road distance)
Optimality of A^*

- **Theorem**: If $h(n)$ is admissible, A^* guarantees to be optimal
Optimality of A*

- **Lemma**: A* expands nodes in order of increasing f value
- Gradually adds "f-contours" of nodes
- Contour i has all nodes with $f=f_i$, where $f_i < f_{i+1}$
Pseudo code of A* Algorithm

create the open list of nodes, initially containing only starting node
create the closed list of nodes, initially empty

while (we have not reached our goal) {
 consider the best node in the open list (the node with the lowest f value)
 if (this node is the goal) {
 then we're done;
 } else {
 move the current node to the closed list and consider all of its neighbors;
 for (each neighbor) {
 if (this neighbor is in the closed list and our current g value is lower) {
 move the node from closed list to open list;
 update the neighbor with the new, lower, g value;
 change the neighbor's parent to our current node;
 } else if (this neighbor is in the open list and our current g value is lower) {
 update the neighbor with the new, lower, g value;
 change the neighbor's parent to our current node;
 } else this neighbor is not in either the open or closed list {
 add the neighbor to the open list and set its g value;
 }
 }
 }
}
Properties of A*

- Complete?
- Optimal?
- Time?
- Space?
Consistent heuristics

A heuristic is consistent (monotonic) if for every node \(n \), every successor \(n' \) of \(n \) generated by any action \(a \),

\[
h(n) \leq c(n,a,n') + h(n')
\]

If \(h \) is consistent, \(f(n) \leq f(n') \).
Optimality of A*

- **Theorem**: If $h(n)$ is consistent, A* guarantees to find an optimal path without reexpanding nodes.
Example

Graph:

- Nodes: S, A, B, C, D, E, F, G
- Edges and Weights:
 - S to A: 2
 - A to B: 1
 - B to C: 4
 - S to D: 5
 - D to E: 2
 - E to F: 4
 - S to G: 11.0
 - G to A: 10.4
 - G to B: 6.7
 - G to C: 4.0
 - S to D: 8.9
 - D to E: 6.9
 - E to F: 3.0
A* Algorithm in action
Depth-first Branch and Bound Search

- Although A* guarantees to generate no more nodes than any other optimal algorithm, its space requirement can be prohibitive for large search problems
- Depth-first search algorithm can be enhanced to utilize heuristic
 - So called Depth-first Branch and Bound Search
 - Uses heuristic functions to bound solution quality, and only expand nodes that can still lead to solutions better than the incumbent
Depth-first Branch and Bound Search

Initialize:
Let open list $Q = \{S\}$
Let closed list $C=\{\}$
$L \leftarrow \infty$ // score of best solution so far

While Q is not empty
 pull Q_1, the first element in Q
 if Q_1 is a goal compute the cost of the solution and update
 $L \leftarrow$ minimum between new cost and old cost
 else
 child_nodes = expand(Q_1),
 For each child node n do:
 Eliminate child_nodes which represent simple loops by checking against the closed list,
 evaluate $f(n)$.
 If $f(n)$ is greater than L, discard n.
 end-for
 Put remaining child_nodes on top of queue
 in the order of their evaluation function, f.
 end
Continue
Properties of Branch-and-Bound

• Complete?
• Optimal?
• Time?
• Space?
Iterative Deepening A* (IDA*)

- Extend iteratively deepening search by
 - Using depth-first branch and bound
 - Updating the search limit according heuristic evaluations

- Properties:
 Guarantee to find an optimal solution
 time: exponential, like A*
 space: linear, like B&B.
Iterative Deepening A* (IDA*)

• Pseudocode:

 Initialize: \(f \leftarrow \) the evaluation function of the start node
 until goal node is found

 Loop:

 Do Branch-and-bound with upper-bound \(L \) equal current evaluation function

 Increment evaluation function to next contour level
 (Update evaluation function to the minimum \(f \)-value which exceeded \(f \) among states which were generated)

 end

 continue
Relationships among search algorithms

Depth first (LIFO ordering)

\[\hat{f} = \text{depth} \]
(Breadth first)

\[\hat{h} = 0 \]
(Uniform cost)

\[\hat{h} \leq h \]

A*

\[\hat{f} = \hat{g} + \hat{h} \]
(Best-first search)

(Generic graph-search algorithms)
Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n) =$
- $h_2(n) =$

- $h_1(S) =$
- $h_2(S) =$
Dominance

- If $h_2(n) \geq h_1(n)$ for all n (both admissible)
 then h_2 dominates h_1
- h_2 is better for search

Typical search costs (average number of nodes expanded):

- $d=12$
 - IDS = 3,644,035 nodes
 - $A^*(h_1) = 227$ nodes
 - $A^*(h_2) = 73$ nodes
- $d=24$
 - IDS = too many nodes
 - $A^*(h_1) = 39,135$ nodes
 - $A^*(h_2) = 1,641$ nodes
Combination of Multiple Heuristics

- Given any admissible heuristics h_a, h_b,

 $h(n) = \max(h_a(n); h_b(n))$

 is also admissible and dominates h_a, h_b
Relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem.
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem.
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.
- If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution.