Artificial Intelligence

Introduction to Search

(Ch. 3.1-4)
Example: Romania

- On holiday in Romania; currently in Arad.
- Flight leaves tomorrow from Bucharest
- Formulate goal:
 - be in Bucharest
- Formulate problem:
 - states: various cities
 - actions: drive between cities
- Find solution:
 - sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
Problem types

• Deterministic, fully observable → single-state problem
 – Agent knows exactly which state it will be in; solution is a sequence

• Non-observable → sensorless problem (conformant problem)
 – Agent may have no idea where it is; solution is a sequence

• Nondeterministic and/or partially observable → contingency problem
 – percepts provide new information about current state
 – solution is a contingent plan or a policy
 – often interleave search, execution

• Unknown state and action space → exploration problem
Example: vacuum world

- **Single-state**, start in #5. Solution?

- **Sensorless**, start in \{1,2,3,4,5,6,7,8\} e.g., Right goes to \{2,4,6,8\} Solution?

 \begin{itemize}
 \item Right, suck, dirt
 \item Left, suck, right, suck
 \end{itemize}
Example: vacuum world

• Contingency
 – Nondeterministic: *Suck* may dirty a clean carpet
 – Partially observable: location, dirt at current location.
 – Percept: \([L, \text{Clean}]\), i.e., start in #5 or #7

Solution?

right, white (dirty) suck
A problem is defined by four items:

1. initial state e.g., "at Arad"
2. actions or successor function \(S(x) = \) set of action–state pairs
 - e.g., \(S(\text{Arad}) = \{<\text{Arad} \rightarrow \text{Zerind}, \text{Zerind}>, \ldots \} \)
3. goal test, can be
 - explicit, e.g., \(x = "\text{at Bucharest}" \)
 - implicit, e.g., \(\text{Checkmate}(x) \)
4. path cost (additive)
 - e.g., sum of distances, number of actions executed, etc.
 - \(c(x,a,y) \) is the step cost, assumed to be \(\geq 0 \)

A solution is a sequence of actions leading from the initial state to a goal state.
Selecting a state space

• (Abstract) Real world is absurdly complex
 → state space must be abstracted for problem solving
• (Abstract) state = set of real states
• action = complex combination of real actions
 – e.g., "Arad → Zerind" represents a complex set of possible routes, detours, rest stops, etc.
• For guaranteed realizability, any real state "in Arad" must get to some real state "in Zerind"
• (Abstract) solution = set of real paths that are solutions in the real world
• Each abstract action should be "easier" than the original problem
Vacuum world state space graph

- states?
- actions?
- goal test?
- path cost?
Example: The 8-puzzle

- states?
- actions?
- goal test?
- path cost?

[Note: optimal solution of n-Puzzle family is NP-hard]
Example: robotic assembly

- states?:
- actions?:
- goal test?:
- path cost?:
Tree search algorithms

• Basic idea:
 – offline, simulated exploration of state space by generating successors of already-explored states (a.k.a. expanding states)

```plaintext
function TREE-SEARCH(problem, strategy) returns a solution, or failure
    initialize the search tree using the initial state of problem
    loop do
        if there are no candidates for expansion then return failure
        choose a leaf node for expansion according to strategy
        if the node contains a goal state then return the corresponding solution
        else expand the node and add the resulting nodes to the search tree
    end loop
```

Tree search example
Tree search example
Tree search example
Implementation: general tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
 fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
 loop do
 if fringe is empty then return failure
 node ← REMOVE-FRONT(fringe)
 if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
 fringe ← INSERT-ALL(EXPAND(node, problem), fringe)
 end loop

function EXPAND(node, problem) returns a set of nodes
 successors ← the empty set
 for each action, result in SUCCESSOR-FN[problem](STATE[node]) do
 s ← a new NODE
 PARENT-NODE[s] ← node; ACTION[s] ← action; STATE[s] ← result
 PATH-COST[s] ← PATH-COST[node] + STEP-COST(node, action, s)
 DEPTH[s] ← DEPTH[node] + 1
 add s to successors
 end for
 return successors
Implementation: states vs. nodes

• A state is a (representation of) a physical configuration

• A node is a data structure constituting part of a search tree includes state, parent node, action, path cost $g(x)$, depth

• The `Expand` function creates new nodes, filling in the various fields and using the `Successor-Fn` of the problem to create the corresponding states.
Search strategies

- A search strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
 - completeness: does it always find a solution if one exists?
 - optimality: does it always find a least-cost solution?
 - time complexity: number of nodes generated
 - space complexity: maximum number of nodes in memory
- Time and space complexity are measured in terms of
 - b: maximum branching factor of the search tree
 - d: depth of the least-cost solution
 - m: maximum depth of the state space (may be ∞)
Uninformed search strategies

- Uninformed search strategies use only the information available in the problem definition
 - Breadth-first search
 - Uniform-cost search
 - Depth-first search
 - Depth-limited search
 - Iterative deepening search
Breadth-first search

- Expand shallowest unexpanded node

Implementation:
- *fringe* is a FIFO queue, i.e., new successors go at end
Breadth-first search

- Expand shallowest unexpanded node
- Implementation:
 - fringe is a FIFO queue, i.e., new successors go at end
Breadth-first search

- Expand shallowest unexpanded node
- **Implementation:**
 - *fringe* is a FIFO queue, i.e., new successors go at end
Breadth-first search

- Expand shallowest unexpanded node
- Implementation:
 - *fringe* is a FIFO queue, i.e., new successors go at end
Properties of breadth-first search

- Complete?
- Optimal?
- Time?
- Space?
Uniform-cost search

- Expand least-cost unexpanded node
- **Implementation:**
 - fringe = queue ordered by path cost
- Equivalent to breadth-first if step costs all equal
- **Complete?** Yes
- **Optimal?** Yes
- **Time?** Be
- **Space?** Be

Cost of
Optimal

Powered by

Smallest
Step Cost
Depth-first search

• Expand deepest unexpanded node

• Implementation:
 – fringe = LIFO queue, i.e., put successors at front
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - fringe = LIFO queue, i.e., put successors at front
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – fringe = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – fringe = LIFO queue, i.e., put successors at front
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – fringe = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - fringe = LIFO queue, i.e., put successors at front
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – fringe = LIFO queue, i.e., put successors at front
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – fringe = LIFO queue, i.e., put successors at front
Depth-first search

• Expand deepest unexpanded node

• Implementation:
 – fringe = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - fringe = LIFO queue, i.e., put successors at front
Properties of depth-first search

- Complete? No
- Optimal? No
- Time? $O(m \times b)$
- Space?
Depth-limited search

- Depth-first search with depth limit \(l \), i.e., nodes at depth \(l \) have no successors

- Recursive implementation:

```python
function Depth-Limited-Search(problem, limit) returns soln/fail/cutoff
    Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit)

function Recursive-DLS(node, problem, limit) returns soln/fail/cutoff
cutoff-occurred? ← false
if Goal-Test[problem](State[node]) then return Solution(node)
else if Depth[node] = limit then return cutoff
date for each successor in Expand(node, problem) do
    result ← Recursive-DLS(successor, problem, limit)
    if result = cutoff then cutoff-occurred? ← true
    else if result ≠ failure then return result
    if cutoff-occurred? then return cutoff else return failure
```
Iterative deepening search

function Iterative-Deepening-Search(problem) returns a solution, or failure

inputs: problem, a problem

for depth ← 0 to ∞ do
 result ← Depth-Limited-Search(problem, depth)
 if result ≠ cutoff then return result
Iterative deepening search $l = 0$
Iterative deepening search $l = 1$
Iterative deepening search $l = 2$
Iterative deepening search $l = 3$

Limit = 3

Diagram showing the iterative deepening search process with a depth limit of 3.
Iterative deepening search

• Number of nodes generated in a depth-limited search to depth \(d\) with branching factor \(b\):
 \[
 N_{DLS} = 1 + b + b^2 + b^3 + \ldots + b^d
 \]

• Number of nodes generated in an iterative deepening search to depth \(d\) with branching factor \(b\):
 \[
 N_{IDS} = \frac{d}{b} + \frac{b(d-1)}{b} + \frac{b^2(d-2)}{b^2} + \ldots + \frac{b^d}{b^d}
 \]

• For \(b = 10\), \(d = 5\),
 - \(N_{DLS} = \frac{5}{10} + \frac{10(5-1)}{10} + \frac{10^2(5-2)}{10^2} + \ldots + \frac{10^5}{10^5} = \frac{5}{10} + \frac{40}{10} + \frac{200}{100} + \ldots + \frac{100,000}{100,000} = 5.45\)
 - \(N_{IDS} = 5\)

• Overhead =
Properties of iterative deepening search

- Complete?
 - Yes

- Optimal?
 - Yes

- Time?
 - No

- Space?
 - Yes
Summary of algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>$O(b^{d+1})$</td>
<td>$O(b^{[C^*/\epsilon]})$</td>
<td>$O(b^m)$</td>
<td>$O(b^l)$</td>
<td>$O(b^d)$</td>
</tr>
<tr>
<td>Space</td>
<td>$O(b^{d+1})$</td>
<td>$O(b^{[C^*/\epsilon]})$</td>
<td>$O(bm)$</td>
<td>$O(bl)$</td>
<td>$O(bd)$</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Repeated states

- Failure to detect repeated states can turn a linear problem into an exponential one!
Graph search

- The only difference is detecting repeated states

```plaintext
function GRAPH-SEARCH( problem, fringe) returns a solution, or failure

closed ← an empty set
fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
  if fringe is empty then return failure
  node ← REMOVE-FRONT(fringe)
  if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
  if STATE[node] is not in closed then
    add STATE[node] to closed
    fringe ← INSERTALL(EXPAND(node, problem), fringe)
```

Summary

• Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored

• Variety of uninformed search strategies

• Iterative deepening search uses only linear space and not much more time than other uninformed algorithms

• Graph search can be exponentially more efficient than tree search