Artificial Intelligence

Heuristic Search
(Ch. 3.5-6)
Best-first search

- Idea: use an evaluation function \(f(n) \) for each node
 - estimate of “promisingness”

\(\rightarrow \) Expand the most promising unexpanded node

- Implementation:
 Order the nodes in fringe in decreasing order ofpromisingness

- Special cases:
 - greedy best-first search
 - A* search
Greedy best-first search

- Evaluation function $f(n) = h(n)$ (heuristic) = estimate of cost from n to $goal$

- e.g., $h_{SLD}(n) =$ straight-line distance from n to Bucharest

- Greedy best-first search expands the node that appears to be closest to $goal$
Romania with step costs in km

Straight-line distance to Bucharest

<table>
<thead>
<tr>
<th>City</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Dobreta</td>
<td>242</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
</tr>
<tr>
<td>Fagaras</td>
<td>178</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>77</td>
</tr>
<tr>
<td>Hirsova</td>
<td>151</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Neamt</td>
<td>234</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>98</td>
</tr>
<tr>
<td>Rimnicu Vilcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Urziceni</td>
<td>80</td>
</tr>
<tr>
<td>Vaslui</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example
Properties of greedy best-first search

• Complete? \(\times \)
• Optimal? \(\times \)
• Time? \(\text{ expo} \)
• Space? \(\text{ expo} \)
A* search

• Idea: avoid expanding paths that are already expensive

• Evaluation function $f(n) = g(n) + h(n)$
 – $g(n) =$ cost so far to reach n
 – $h(n) =$ estimated cost from n to goal
 – $f(n) =$ estimated total cost of path through n to goal
A* search example

Arad
366 = 0 + 366
A* search example
Admissible heuristics

• A heuristic $h(n)$ is **admissible** if for every node n, $h(n) \leq h^*(n)$, where $h^*(n)$ is the **true** cost to reach the goal state from n.

• An admissible heuristic **never overestimates** the cost to reach the goal, i.e., it is **optimistic**

• Example: $h_{SLD}(n)$ (never overestimates the actual road distance)
Optimality of A*

- **Theorem:** If $h(n)$ is admissible, A* guarantees to be optimal

\[f(n) \leq f(n*) \]

Path $n*\rightarrow n$ is optimal.

\[f(G) \geq f(n*) \]
Optimality of A

- **Lemma**: A* expands nodes in order of increasing f value
- Gradually adds "f-contours" of nodes
- Contour i has all nodes with $f=f_i$, where $f_i < f_{i+1}$
create the open list of nodes, initially containing only starting node
create the closed list of nodes, initially empty
while (we have not reached our goal) {
 consider the best node in the open list (the node with the lowest f value)
 if (this node is the goal) {
 then we're done;
 } else {
 move the current node to the closed list and consider all of its neighbors;
 for (each neighbor) {
 if (this neighbor is in the closed list and our current g value is lower) {
 move the node from closed list to open list;
 update the neighbor with the new, lower, g value;
 change the neighbor's parent to our current node;
 } else if (this neighbor is in the open list and our current g value is lower) {
 update the neighbor with the new, lower, g value;
 change the neighbor's parent to our current node;
 } else this neighbor is not in either the open or closed list {
 add the neighbor to the open list and set its g value;
 }
 }
 }
}
Properties of A*

- Complete? yes
- Optimal? yes
- Time? expo
- Space? expo
Consistent heuristics

- A heuristic is **consistent (monotonic)** if for every node n, every successor n' of n generated by any action a,

 $$h(n) \leq c(n, a, n') + h(n')$$

- If h is consistent, $f(n) \leq f(n')$.

Optimality of A*

• **Theorem:** If $h(n)$ is consistent, A* guarantees to find an optimal path without reexpanding nodes.
Example

Graph:
- Nodes: S, A, B, C, D, E, F, G
- Edges:
 - S → D: 5
 - A → B: 1
 - B → E: 4
 - C → F: 3
 - S → G: 11.0
 - A → G: 10.4
 - B → G: 6.7
 - C → G: 4.0
 - D → G: 8.9
 - E → G: 6.9
 - F → G: 3.0
A* Algorithm in action

Diagram of a graph with nodes labeled S, A, B, C, D, E, F, G, and edges connecting them with weights.

Weights: 2, 5, 2, 4, 5, 4, 3, 11.0, 8.9, 6.7, 4.0, 6.9, 3.0.
Depth-first Branch and Bound Search

- Although A* guarantees to generate no more nodes than any other optimal algorithm, its space requirement can be prohibitive for large search problems.
- Depth-first search algorithm can be enhanced to utilize heuristic:
 - So called Depth-first Branch and Bound Search
 - Uses heuristic functions to bound solution quality, and only expand nodes that can still lead to solutions better than the incumbent.
Depth-first Branch and Bound Search

Initialize:
Let open list \(Q = \{ S \} \)
Let closed list \(C = \{ \} \)
\(L \leftarrow \infty \) // score of best solution so far
While \(Q \) is not empty
 pull \(Q_1 \), the first element in \(Q \)
 if \(Q_1 \) is a goal compute the cost of the solution and update
 \(L \leftarrow \) minimum between new cost and old cost
 else
 child_nodes = expand(\(Q_1 \)),
 For each child node \(n \) do:
 Eliminate child_nodes which represent simple loops by checking against the closed list,
 evaluate \(f(n) \).
 If \(f(n) \) is greater than \(L \), discard \(n \).
 end-for
 Put remaining child_nodes on top of queue in the order of their evaluation function, \(f \).
 end
Continue
Properties of Branch-and-Bound

- **Complete?** yes
- **Optimal?** yes
- **Time?** linear
Iterative Deepening A* (IDA*)

- Extend iteratively deepening search by
 - Using depth-first branch and bound
 - Updating the search limit according heuristic evaluations

- Properties:
 Guarantee to find an optimal solution
 time: exponential, like A*
 space: linear, like B&B.
Iterative Deepening A* (IDA*)

- **Pseudocode:**

 Initialize: $f \leftarrow$ the evaluation function of the start node
 until goal node is found

 Loop:

 Do Branch-and-bound with upper-bound L equal current evaluation function

 Increment evaluation function to next contour level

 (Update evaluation function to the minimum f-value which exceeded f among states which were generated)

 end

 continue

- 2nd: $L_2 = \min \{ f(0), f(10), f(13), f(40) \}$
Relationships among search algorithms

- Depth first (LIFO ordering)
- $\hat{f} =$ depth (Breadth first)
- $\hat{h} = 0$ (Uniform cost)
- $\hat{h} \leq h$
- A* ($\hat{f} = \hat{g} + \hat{h}$) (Best-first search)
- (Generic graph-search algorithms)
Admissible heuristics

E.g., for the 8-puzzle:

- \(h_1(n) = \)
- \(h_2(n) = \)

\[h_1(S) = 8 \]
\[h_2(S) = 3 + 1 + 2 + 2 + 3 + 2 + 2 + 2 \]
Dominance

- If $h_2(n) \geq h_1(n)$ for all n (both admissible)
 then h_2 dominates h_1
- h_2 is better for search

- Typical search costs (average number of nodes expanded):

 - $d=12$
 - IDS = 3,644,035 nodes
 - $A^*(h_1) = 227$ nodes
 - $A^*(h_2) = 73$ nodes

 - $d=24$
 - IDS = too many nodes
 - $A^*(h_1) = 39,135$ nodes
 - $A^*(h_2) = 1,641$ nodes
Combination of Multiple Heuristics

- Given any admissible heuristics h_a, h_b,
 \[h(n) = \max(h_a(n); h_b(n)) \]
 is also admissible and dominates h_a, h_b
Relaxed problems

• A problem with fewer restrictions on the actions is called a relaxed problem.
• The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem.
• If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.
• If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution.