Artificial Intelligence

Heuristic Search
(Ch. 3.5-6)
Best-first search

- Idea: use an evaluation function $f(n)$ for each node
 - estimate of “promisingness”

→ Expand the most promising unexpanded node

- Implementation:
 Order the nodes in fringe in decreasing order of promisingness

- Special cases:
 - greedy best-first search
 - A* search
Greedy best-first search

- Evaluation function $f(n) = h(n)$ (heuristic)
 - = estimate of cost from n to goal

- e.g., $h_{SLD}(n) =$ straight-line distance from n to Bucharest

- Greedy best-first search expands the node that appears to be closest to goal
Romania with step costs in km

Straight-line distance to Bucharest
- Arad: 366
- Bucharest: 0
- Craiova: 160
- Dobreata: 242
- Eforie: 161
- Fagaras: 178
- Giurgiu: 77
- Hirsova: 151
- Iasi: 226
- Lugoj: 244
- Mehadia: 241
- Neamt: 234
- Oradea: 380
- Pitesti: 98
- Rimnicu Vilcea: 193
- Sibiu: 253
- Timisoara: 329
- Urziceni: 80
- Vaslui: 199
- Zerind: 374
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example
Properties of greedy best-first search

- Complete?
- Optimal?
- Time?
- Space?
A* search

- **Idea:** avoid expanding paths that are already expensive
- **Evaluation function** $f(n) = g(n) + h(n)$
 - $g(n) = \text{cost so far to reach } n$
 - $h(n) = \text{estimated cost from } n \text{ to goal}$
 - $f(n) = \text{estimated total cost of path through } n \text{ to goal}$
A* search example

Arad

366 = 0 + 366
A* search example

A* algorithm example:

- Arad
 - Sibiu: 393 = 140 + 253
 - Timisoara: 447 = 118 + 329
 - Zerind: 449 = 75 + 374
A* search example
A* search example
A* search example
A* search example
Admissible heuristics

• A heuristic $h(n)$ is admissible if for every node n, $h(n) \leq h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n.

• An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic

• Example: $h_{SLD}(n)$ (never overestimates the actual road distance)
Optimality of A*

- **Theorem:** If $h(n)$ is admissible, A* guarantees to be optimal
Optimality of A^*

- **Lemma**: A^* expands nodes in order of increasing f value
- Gradually adds "f-contours" of nodes
- Contour i has all nodes with $f=f_i$, where $f_i < f_{i+1}$
Pseudo code of A* Algorithm

create the open list of nodes, initially containing only starting node
create the closed list of nodes, initially empty
while (we have not reached our goal) {
 consider the best node in the open list (the node with the lowest f value)
 if (this node is the goal) {
 then we're done;
 } else {
 move the current node to the closed list and consider all of its neighbors;
 for (each neighbor) {
 if (this neighbor is in the closed list and our current g value is lower) {
 move the node from closed list to open list;
 update the neighbor with the new, lower, g value;
 change the neighbor's parent to our current node;
 } else if (this neighbor is in the open list and our current g value is lower) {
 update the neighbor with the new, lower, g value;
 change the neighbor's parent to our current node;
 } else this neighbor is not in either the open or closed list {
 add the neighbor to the open list and set its g value;
 }
 }
 }
}
Properties of A*

- Complete?
- Optimal?
- Time?
- Space?
A heuristic is consistent (monotonic) if for every node n, every successor n' of n generated by any action a,

$$h(n) \leq c(n,a,n') + h(n')$$

If h is consistent, $f(n) \leq f(n')$.
Optimality of A^*

- **Theorem:** If $h(n)$ is consistent, A^* guarantees to find an optimal path without reexpanding nodes.
A* Algorithm in action
Depth-first Branch and Bound Search

- Although A* guarantees to generate no more nodes than any other optimal algorithm, its space requirement can be prohibitive for large search problems.
- Depth-first search algorithm can be enhanced to utilize heuristic.
 - So called Depth-first Branch and Bound Search.
 - Uses heuristic functions to bound solution quality, and only expand nodes that can still lead to solutions better than the incumbent.
Depth-first Branch and Bound Search

Initialize:
Let open list Q = {S}
Let closed list C={}
L ← ∞ // score of best solution so far
While Q is not empty
 pull Q1, the first element in Q
 if Q1 is a goal compute the cost of the solution and update
 L ← minimum between new cost and old cost
 else
 child_nodes = expand(Q1),
 For each child node n do:
 Eliminate child_nodes which represent simple loops by checking against the closed list,
 evaluate f(n).
 If f(n) is greater than L, discard n.
 end-for
 Put remaining child_nodes on top of queue
 in the order of their evaluation function, f.
 end
Continue
Properties of Branch-and-Bound

• Complete?
• Optimal?
• Time?
• Space?
Iterative Deepening A* (IDA*)

• Extend iteratively deepening search by
 – Using depth-first branch and bound
 – Updating the search limit according heuristic evaluations

• Properties:
 Guarantee to find an optimal solution
 time: exponential, like A*
 space: linear, like B&B.
Iterative Deepening A* (IDA*)

- **Pseudocode:**

 Initialize: $f \leftarrow \text{the evaluation function of the start node}$

 until goal node is found

 Loop:

 Do Branch-and-bound with upper-bound L equal current evaluation function

 Increment evaluation function to next contour level

 (Update evaluation function to the minimum f-value which exceeded f among states which were generated)

 end

 continue
Relationships among search algorithms

- Depth first (LIFO ordering)
- \(\hat{f} = \text{depth} \) (Breadth first)
- \(\hat{h} = 0 \) (Uniform cost)
- \(\hat{h} \leq h \)
- A* \(\hat{f} = \hat{g} + \hat{h} \) (Best-first search)
- (Generic graph-search algorithms)
Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n) =$
- $h_2(n) =$

$\begin{array}{ccc}
7 & 2 & 4 \\
5 & 6 & \\
8 & 3 & 1
\end{array}$
$\begin{array}{ccc}
1 & 2 \\
3 & 4 & 5 \\
6 & 7 & 8
\end{array}$

- $h_1(S) =$
- $h_2(S) =$
Dominance

- If $h_2(n) \geq h_1(n)$ for all n (both admissible)
 then h_2 dominates h_1
- h_2 is better for search

- Typical search costs (average number of nodes expanded):
 - $d=12$
 - IDS = 3,644,035 nodes
 - $A^*(h_1) = 227$ nodes
 - $A^*(h_2) = 73$ nodes
 - $d=24$
 - IDS = too many nodes
 - $A^*(h_1) = 39,135$ nodes
 - $A^*(h_2) = 1,641$ nodes
Combination of Multiple Heuristics

- Given any admissible heuristics h_a, h_b,

 $$h(n) = \max(h_a(n); h_b(n))$$

 is also admissible and dominates h_a, h_b
Relaxed problems

• A problem with fewer restrictions on the actions is called a relaxed problem.
• The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem.
• If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.
• If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution.