Artificial Intelligence

Constraint Satisfaction Problem

Ch. 6
Constraint satisfaction problems (CSPs)

- **Standard search problem:**
 - state is a "black box" – any data structure that supports successor function, heuristic function, and goal test

- **CSP:**
 - state is defined by variables X_i with values from domain D_i
 - goal test is a set of constraints specifying allowable combinations of values for subsets of variables

- **Allows useful general-purpose algorithms with more power than standard search algorithms**
Example: Map-Coloring

- Variables \(WA, NT, Q, NSW, V, SA, T \)
- Domains \(D_i = \{\text{red, green, blue}\} \)
- Constraints: adjacent regions must have different colors
e.g., \(WA \neq NT \), or \((WA, NT)\) in \{\(\text{(red, green)}, \text{(red, blue)}, \text{(green, red)}, \text{(green, blue)}, \text{(blue, red)}, \text{(blue, green)}\}\)
Example: Map-Coloring

- Solutions are complete and consistent assignments, e.g., WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green
Constraint graph

- **Binary CSP**: each constraint relates two variables
- **Constraint graph**: nodes are variables, arcs are constraints
Example: 8-queens problem

- **Variables:** Queens
- **Domains:** positions
- **Constraints:** no queens attack each other
Varieties of CSPs

• Discrete variables
 – finite domains:
 » n variables, domain size $d \rightarrow O(d^n)$ complete assignments
 » e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)
 – infinite domains:
 » integers, strings, etc.
 » e.g., job scheduling, variables are start/end days for each job
 » need a constraint language, e.g., $\text{StartJob}_1 + 5 \leq \text{StartJob}_3$

• Continuous variables
 – e.g., start/end times for Hubble Space Telescope observations
 – linear constraints solvable in polynomial time by linear programming
Varieties of constraints

• **Unary** constraints involve a single variable,
 – e.g., SA ≠ green

• **Binary** constraints involve pairs of variables,
 – e.g., SA ≠ WA

• **Higher-order** constraints involve 3 or more variables,
 – e.g., cryptarithmetic column constraints
Example: Cryptarithmetic

- Variables: $F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3$
- Domains: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Constraints: $\text{Alldiff} \ (F, T, U, W, R, O)$
 - $O + O = R + 10 \cdot X_1$
 - $X_1 + W + W = U + 10 \cdot X_2$
 - $X_2 + T + T = O + 10 \cdot X_3$
 - $X_3 = F$, $T \neq 0$, $F \neq 0$
Real-world CSPs

- Assignment problems
 - e.g., who teaches what class
- Timetabling problems
 - e.g., which class is offered when and where?
- Transportation scheduling
- Factory scheduling
- Notice that many real-world problems involve real-valued variables
Let's start with the straightforward approach, then fix it.

States are defined by the values assigned so far.

- **Initial state**: the empty assignment \{\}\.
- **Successor function**: assign a value to an unassigned variable that does not conflict with current assignment \\
 \(\rightarrow\) fail if no legal assignments
- **Goal test**: the current assignment is complete.

This is the same for all CSPs.

1. Every solution appears at depth \(n\) with \(n\) variables \\
 \(\rightarrow\) use depth-first search
2. Path is irrelevant, so can also use complete-state formulation
3. \(b = (n - \ell)d\) at depth \(\ell\) hence \(n! \cdot d^n\) leaves
• Variable assignments are **commutative**, i.e.,
 \[WA = \text{red then NT = green} \] same as \[NT = \text{green then WA = red} \]
• **Only need to consider assignments to a single variable at each node**
 \[b = d \] and there are \(d^n \) leaves
• Depth-first search for CSPs with single-variable assignments is called **backtracking search**
• Backtracking search is the basic uninformed algorithm for CSPs
• Can solve \(n \)-queens for \(n \approx 25 \)
Backtracking example
Backtracking example
Backtracking example
Backtracking example
Improving backtracking efficiency

- General-purpose methods can give huge gains in CSP speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
Most constrained variable

- Most constrained variable:
 choose the variable with the fewest legal values

- a.k.a. minimum remaining values (MRV) heuristic
Most constraining variable

- Tie-breaker among most constrained variables
- Most constraining variable:
 - choose the variable with the most constraints on remaining variables
Least constraining value

- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables

- Combining these heuristics makes 1000 queens feasible
Forward checking

• **Idea:**
 – Keep track of remaining legal values for unassigned variables
 – Terminate search when any variable has no legal values
Forward checking

- **Idea:**
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values
Forward checking

- **Idea:**
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values
Forward checking

- **Idea:**
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values
Constraint propagation

• Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

• NT and SA cannot both be blue!
• **Constraint propagation** repeatedly enforces constraints locally
Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y
Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y
Arc consistency

• Simplest form of propagation makes each arc consistent

• $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y

• If X loses a value, neighbors of X need to be rechecked
Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y

- If X loses a value, neighbors of X need to be rechecked
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
Hill Climbing Search

- In many optimization problems, path is irrelevant; the goal state itself is the solution.
- Then state space = set of “complete” configurations; find optimal configuration, e.g., TSP.
- Or, find configuration satisfying constraints, e.g., timetable.
- In such cases, can use iterative improvement algorithms, i.e., keep a single “current” state, try to improve it.
- Constant space, suitable for online as well as offline search.
Example: Traveling Salesman Problem

- Start with any complete tour, perform pairwise exchanges

- Variants of this approach get within 1% of optimal very quickly with thousands of cities
Example: 4-Queens

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal
- Move a queen to reduce number of conflicts

Almost always solves n-queens problems almost instantaneously for very large n, e.g., $n=1$ million
Hill-climbing search

• "Like climbing Everest in thick fog with amnesia"

function **Hill-Climbing** *(problem)* returns a state that is a local maximum

inputs: problem, a problem

local variables: current, a node

neighbor, a node

```
current ← MAKE-NODE(Initial-State[problem])
loop do
    neighbor ← a highest-valued successor of current
    if VALUE[neighbor] ≤ VALUE[current] then return STATE[current]
    current ← neighbor
end
```
Hill-climbing search

- Problem: depending on initial state, can get stuck in local maxima
- Random-restart hill climbing overcomes local maxima -- trivially complete
- Random sideways moves escape from shoulders loop on at maxima
Hill-climbing search: 8-queens problem

- $h =$ number of pairs of queens that are attacking each other, either directly or indirectly
- $h =$ 17 for the above state
Hill-climbing search: 8-queens problem

- A local minimum with $h = 1$
Simulated annealing search

- Idea: escape local maxima by allowing some "bad" moves but **gradually decrease** their size and frequency

```plaintext
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
    inputs: problem, a problem
             schedule, a mapping from time to "temperature"
    local variables: current, a node
                     next, a node
                     T, a "temperature" controlling prob. of downward steps

    current ← MAKE-NODE(INITIAL-STATE[problem])
    for t ← 1 to ∞ do
        T ← schedule[t]
        if T = 0 then return current
        next ← a randomly selected successor of current
        ΔE ← VALUE[next] - VALUE[current]
        if ΔE > 0 then current ← next
        else current ← next only with probability $e^{ΔE/T}$
```
Properties of simulated annealing search

• One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1

• Widely used in VLSI layout, airline scheduling, etc
Local beam search

• Idea:
 – Keep track of k states rather than just one
 – Start with k randomly generated states
 – At each iteration, all the successors of all k states are generated
 – If any one is a goal state, stop; else select the k best successors from the complete list and repeat.

• Not the same as k searches run in parallel!
 Searches that find good states recruit other searches to join them

• Problem: quite often, all k states end up on same local hill

• Idea: choose k successors randomly, biased towards good ones

• Observe the close analogy to natural selection!
Genetic algorithms

• = stochastic local beam search + generate successors from pairs of states

• Idea:
 – Start with \(k \) randomly generated states (population)
 – A state is represented as a string over a finite alphabet (often a string of 0s and 1s)
 – Evaluation function (fitness function). Higher values for better states.
 – Produce the next generation of states by selection, crossover, and mutation
Genetic algorithms

Fitness function: number of non-attacking pairs of queens (min = 0, max = \(8 \times 7/2 = 28\))

- \(24/(24+23+20+11) = 31\%\)
- \(23/(24+23+20+11) = 29\%\) etc
Genetic algorithms

Crossover helps iff substrings are meaningful components