Artificial Intelligence

Linear Regression
Ch. 18.6
Basics of Linear Regression

- Regression algorithm
- Supervised technique.
- In one dimension:
 - Identify $y : \mathbb{R} \rightarrow \mathbb{R}$
- In D-dimensions:
 - Identify $y : \mathbb{R}^D \rightarrow \mathbb{R}$
- Given: training data: $\{ \mathbf{x}_0, \mathbf{x}_1, \ldots, \mathbf{x}_N \}$
 - And targets: $\{ t_0, t_1, \ldots, t_N \}$
Graphical Example of Regression
Graphical Example of Regression
Graphical Example of Regression
In linear regression, we assume that the model that generates the data involved only a linear combination of input variables.

\[y(\vec{x}, \vec{w}) = w_0 + w_1 x_1 + \ldots + w_D x_D \]

\[y(\vec{x}, \vec{w}) = w_0 + \sum_{j=1}^{D} w_j x_j \]

Where \(\vec{w} \) is a vector of weights which define the D parameters of the model.
Evaluation

• How can we evaluate the performance of a regression solution?
• Error Functions (or Loss functions)
 – Squared Error

$$E(t_i, y(\vec{x}_i, \vec{w})) = \frac{1}{2} (t_i - y(\vec{x}_i, \vec{w}))^2$$
Evaluation

• How can we evaluate the performance of a regression solution?
• Error Functions (or Loss functions)
 – Squared Error
 – Linear Error

\[
E(t_i, y(x_i, w)) = |t_i - y(x_i, w)|
\]
Regression Error
Empirical Risk

- Empirical risk is the measure of the loss from data.

\[R_{\text{emp}} = \frac{1}{N} \sum_{i=1}^{N} E(t_i, y(\vec{x}_i, \vec{w})) \]

\[= \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (t_i - y(\vec{x}_i, \vec{w}))^2 \]

- By minimizing risk on the training data, we optimize the fit with respect to the loss function

\[\nabla_{\vec{w}} R = 0 \]
Model Likelihood and Empirical Risk

• Two related but distinct ways to look at a model.
 1. Model Likelihood.
 » “What is the likelihood that a model \textit{generated} the observed data?”
 2. Empirical Risk
 » “How much \textit{error} does the model have on the training data?”
Model Likelihood

What is the likelihood that a model with some parameters generated an observed sample?

We assume Gaussian noise:

\[p(t|x, \bar{w}, \beta) = N(t; y(x, \bar{w}), \beta^{-1}) \]

where \(\beta = \frac{1}{\sigma^2} \)

\[p(t|x, \bar{w}, \beta) = \prod_{i=0}^{N-1} N(t_i; y(x_i, \bar{w}), \beta^{-1}) \]

Assuming Independently Identically Distributed (iid) data.
Understanding Model Likelihood

\[p(t | \vec{x}, \vec{w}, \beta) = \prod_{i=0}^{N-1} N(t_i; y(x_i, \vec{w}), \beta^{-1}) \]

\[p(t | \vec{x}, \vec{w}, \beta) = \prod_{i=0}^{N-1} \sqrt{\beta} \frac{1}{\sqrt{2\pi}} \exp \left\{ \frac{-\beta}{2} (y(x_i, \vec{w}) - t_i)^2 \right\} \]

\[\ln p(t | \vec{x}, \vec{w}, \beta) = \ln \prod_{i=0}^{N-1} \sqrt{\beta} \frac{1}{\sqrt{2\pi}} \exp \left\{ \frac{-\beta}{2} (y(x_i, \vec{w}) - t_i)^2 \right\} \]

\[= -\frac{\beta}{2} \sum_{i=0}^{N-1} \{(y(x_i, \vec{w}) - t_i)^2\} + \frac{N}{2} \ln \beta - \frac{N}{2} \ln 2\pi \]

Substitution for the eqn of a gaussian

Apply a log function

Let the log dissolve products into sums
Understanding Model Likelihood

\[
\ln p(t|\bar{x}, \bar{w}, \beta) = -\frac{\beta}{2} \sum_{i=0}^{N-1} \{(y(x_i, \bar{w}) - t_i)^2\} + \frac{N}{2} \ln \beta - \frac{N}{2} \ln 2\pi
\]

\[
\nabla_{\bar{w}} \ln p(t|\bar{x}, \bar{w}, \beta) = \nabla_{\bar{w}} \left(-\frac{\beta}{2} \sum_{i=0}^{N-1} \{(y(x_i, \bar{w}) - t_i)^2\} \right)
\]

Optimize the weights. (Maximum Likelihood Estimation)

\[
\nabla_{\bar{w}} \left(-\frac{\beta}{2} \sum_{i=0}^{N-1} \{(y(x_i, \bar{w}) - t_i)^2\} \right) = 0
\]

Empirical Risk w/ Squared Loss Function

\[
R_{emp} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2}(t_i - y(\bar{x}_i, \bar{w}))^2
\]
Maximizing Log Likelihood (1-D)

• Find the optimal settings of \(w \).

\[
\vec{w} = \begin{bmatrix} w_0 & w_1 \end{bmatrix}^T
\]

\[
\nabla_{\vec{w}} R = \vec{0}
\]

\[
\begin{bmatrix}
\frac{\partial R}{\partial w_0} \\
\frac{\partial R}{\partial w_1}
\end{bmatrix} = \begin{bmatrix} 0 \\
0
\end{bmatrix}
\]

\[
R(\vec{w}) = \frac{1}{2N} \sum_{i=0}^{N-1} (t_i - w_1 x_i - w_0)^2
\]
Maximizing Log Likelihood

\[\nabla_{\vec{w}} R(\vec{w}) = \frac{1}{2N} \sum_{i=0}^{N-1} (t_i - w_1 x_i - w_0)^2 \]

\[\frac{\partial R}{\partial w_0} = \frac{1}{N} \sum_{i=0}^{N-1} (t_i - w_1 x_i - w_0)(-1) \]

\[\frac{1}{N} \sum_{i=0}^{N-1} (t_i - w_1 x_i - w_0)(-1) = 0 \]

\[\frac{1}{N} \sum_{i=0}^{N-1} w_0 = \frac{1}{N} \sum_{i=0}^{N-1} (t_i - w_1 x_i) \]

\[w_0 = \frac{1}{N} \sum_{i=0}^{N-1} (t_i - w_1 x_i) \]

\[w_0 = \frac{1}{N} \sum_{i=0}^{N-1} t_i - w_1 \frac{1}{N} \sum_{i=0}^{N-1} x_i \]
Maximizing Log Likelihood

\[\nabla_w R(\bar{w}) = \frac{1}{2N} \sum_{i=0}^{N-1} (t_i - w_1x_i - w_0)^2 \]

\[\frac{\partial R}{\partial w_1} = \frac{1}{N} \sum_{i=0}^{N-1} (t_i - w_1x_i - w_0)(-x_i) \]

Set to zero

\[\frac{1}{N} \sum_{i=0}^{N-1} (t_i - w_1x_i - w_0)(-x_i) = 0 \]

\[\frac{1}{N} \sum_{i=0}^{N-1} -(t_ix_i - w_1x_i^2 - w_0x_i) = 0 \]

Separate the sum to isolate \(w_0 \)

\[\frac{1}{N} \sum_{i=0}^{N-1} w_1x_i^2 = \frac{1}{N} \sum_{i=0}^{N-1} t_ix_i - \frac{1}{N} \sum_{i=0}^{N-1} w_0x_i \]

\[w_1 \sum_{i=0}^{N-1} x_i^2 = \sum_{i=0}^{N-1} t_ix_i - w_0 \sum_{i=0}^{N-1} x_i \]
Maximizing Log Likelihood

\[w_0^* = \frac{1}{N} \sum_{i=0}^{N-1} t_i - w_1 \frac{1}{N} \sum_{i=0}^{N-1} x_i \]

\[w_1 \sum_{i=0}^{N-1} x_i^2 = \sum_{i=0}^{N-1} t_i x_i - w_0 \sum_{i=0}^{N-1} x_i \]

\[w_1 \left(\sum_{i=0}^{N-1} x_i^2 - \frac{1}{N} \sum_{i=0}^{N-1} x_i \sum_{i=0}^{N-1} x_i \right) = \sum_{i=0}^{N-1} t_i x_i - \frac{1}{N} \sum_{i=0}^{N-1} t_i \sum_{i=0}^{N-1} x_i \]

\[w_1^* = \frac{\sum_{i=0}^{N-1} t_i x_i - \frac{1}{N} \sum_{i=0}^{N-1} t_i \sum_{i=0}^{N-1} x_i}{\sum_{i=0}^{N-1} x_i^2 - \frac{1}{N} \sum_{i=0}^{N-1} x_i \sum_{i=0}^{N-1} x_i} \]
Maximizing Log Likelihood

- Clean and easy.

\[
\begin{bmatrix}
 w_0^* \\
 w_1^*
\end{bmatrix} = \begin{bmatrix}
 \frac{1}{N} \sum_{i=0}^{N-1} t_i - w_1^* \frac{1}{N} \sum_{i=0}^{N-1} x_i \\
 \sum_{i=0}^{N-1} t_i x_i - \frac{1}{N} \sum_{i=0}^{N-1} t_i \sum_{i=0}^{N-1} x_i \\
 \sum_{i=0}^{N-1} x_i^2 - \frac{1}{N} \sum_{i=0}^{N-1} x_i \sum_{i=0}^{N-1} x_i
\end{bmatrix}
\]

- Or not…

- Apply some linear algebra.
Likelihood using linear algebra

- Representing the linear regression function in terms of vectors.

\[y = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_{N-1} x_{N-1} \]

\[\vec{x} = \begin{bmatrix} 1 & x_1 & x_2 & \ldots & x_{N-1} \end{bmatrix}^T \]

\[\vec{w} = \begin{bmatrix} w_0 & w_1 & w_2 & \ldots & w_{N-1} \end{bmatrix}^T \]

\[y = \vec{x}^T \vec{w} \]
Likelihood using linear algebra

- Stack x^T into a matrix of data points, X.

$$R_{emp}(\vec{w}) = \frac{1}{2N} \sum_{i=0}^{N-1} (t_i - w_1 x_i - w_0)^2$$

$$= \frac{1}{2N} \sum_{i=0}^{N-1} \left(t_i - \begin{bmatrix} 1 & x_i \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} \right)^2$$

$$= \frac{1}{2N} \left\| \begin{bmatrix} t_0 \\ t_1 \\ \vdots \\ t_{N-1} \end{bmatrix} - \begin{bmatrix} 1 & x_0 \\ 1 & x_1 \\ \vdots \\ 1 & x_{N-1} \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} \right\|^2$$

$$= \frac{1}{2N} \left\| \vec{t} - \vec{X}\vec{w} \right\|^2$$
Likelihood in multiple dimensions

• This representation of risk has no inherent dimensionality.

\[R_{emp}(\vec{w}) = \frac{1}{2N} \left\| \vec{t} - \vec{Xw} \right\|^2 \]

\[\nabla_{\vec{w}} R_{emp}(\vec{w}) = 0 \]

\[\nabla_{\vec{w}} \left(\frac{1}{2N} \left\| \vec{t} - \vec{Xw} \right\|^2 \right) = 0 \]
Maximum Likelihood Estimation redux

\[\nabla_{\vec{w}} R_{emp}(\vec{w}) = 0 \]

\[\nabla_{\vec{w}} \left(\frac{1}{2N} \left\| \vec{t} - \hat{X} \vec{w} \right\|^2 \right) = 0 \]

\[\frac{1}{2N} \nabla_{\vec{w}} \left((\vec{t} - \hat{X} \vec{w})^T (\vec{t} - \hat{X} \vec{w}) \right) = 0 \]

\[\frac{1}{2N} \nabla_{\vec{w}} \left((\vec{t}^T \vec{t} - \vec{t}^T \hat{X} \vec{w} - \vec{w}^T \hat{X}^T \vec{t} + \vec{w}^T \hat{X}^T \hat{X} \vec{w}) \right) = 0 \]

\[\frac{1}{2N} \left(-\hat{X}^T \vec{t} - \hat{X}^T \vec{t} + 2\hat{X}^T \hat{X} \vec{w}^* \right) = 0 \]

\[\frac{1}{2N} \left(-2\hat{X}^T \vec{t} + 2\hat{X}^T \hat{X} \vec{w}^* \right) = 0 \]

\[\hat{X}^T \hat{X} \vec{w}^* = \hat{X}^T \vec{t} \]

\[\vec{w}^* = (\hat{X}^T \hat{X})^{-1} \hat{X}^T \vec{t} \]
Extension to polynomial regression
Extension to polynomial regression

\begin{align*}
 y &= c_0 + c_1 x_1 + c_2 x_2 \\
 y &= c_0 + c_1 x + c_2 x^2
\end{align*}

- Polynomial regression is the same as linear regression in \(D \) dimensions
Training data vs. Testing Data

- Evaluating the performance of a classifier on training data only is meaningless.
- With enough parameters, a model can simply memorize (encode) every training point.
- To evaluate performance, data is divided into training and testing (or evaluation) data.
 - Training data is used to learn model parameters
 - Testing data is used to evaluate performance
Overfitting

\[M = 0 \]

\[M = 1 \]
Overfitting
Overfitting performance
Definition of overfitting

• When the model describes the noise, rather than the signal.

• How can you tell the difference between overfitting, and a bad model?
Possible detection of overfitting

- **Stability**
 - An appropriately fit model is stable under different samples of the training data
 - An overfit model generates inconsistent performance

- **Performance**
 - A good model has low test error
 - A bad model has high test error
What is the optimal model size?

• The best model size generalizes to unseen data the best.
• Approximate this by testing error.
• One way to optimize parameters is to minimize testing error.
 – This operation uses testing data as tuning or development data
• Sacrifices training data in favor of parameter optimization