Artificial Intelligence

Neural Networks
Ch. 18.7
Brief History

- Try to create artificial intelligence based on natural intelligence
- The brain
 - massively interconnected neurons
Natural Neural Networks

- Signals “move” via electrochemical signals
- The synapses release a chemical transmitter
 - the sum of which can cause a threshold to be reached, causing the neuron to “fire”
- Synapses can be inhibitory or excitatory
- We are born with about 100 billion neurons
- A neuron may connect to as many as 100,000 other neurons
Real Neural Learning

• Synapses change size and strength with experience.
• Hebb rule
 – When two connected neurons are firing at the same time, the strength of the synapse between them increases.
• “Neurons that fire together, wire together.”
Artificial Neural Networks

- Analogy to biological neural systems
- Attempt to understand natural biological systems through computational modeling
- Intelligent behavior as an “emergent” property of large number of simple units rather than from explicitly encoded symbolic rules and algorithms
Modeling a Neuron

\[a_i = g(in_i) \]

\[in_i = \sum_j W_{j,i} a_j \]

- \(a_j \): Activation value of unit \(j \)
- \(w_{j,i} \): Weight on link from unit \(j \) to unit \(i \)
- \(in_i \): Weighted sum of inputs to unit \(i \)
- \(a_i \): Activation value of unit \(i \)
- \(g \): Activation function
Activation Functions

- **Step**\(_t\)(x) = 1 if \(x \geq t\), else 0
 threshold=t
- **Sign**(x) = +1 if \(x \geq 0\), else −1
 threshold=0
- **Sigmoid**(x) = \(1/(1+e^{-x})\)

(a) Step function
(b) Sign function
(c) Sigmoid function
• McCollough and Pitts (1943) showed how such model neurons could compute logical functions and be used to construct finite-state machines.
The First Neural Networks

AND Function

Threshold(Y) = 2

<table>
<thead>
<tr>
<th>X1</th>
<th>X2</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The First Neural Networks

OR Function

Threshold(Y) = 2

<table>
<thead>
<tr>
<th>X1</th>
<th>X2</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The First Neural Networks

AND NOT Function

Threshold\((Y) = 2\)
Perceptron network

Perceptron Network

Single Perceptron
Perceptron Learning

• Assume supervised training examples giving the desired output for a unit given a set of known input activations.
• Learn synaptic weights so that unit produces the correct output for each example.
• Perceptron uses iterative update algorithm to learn a correct set of weights.
Perceptron Learning Rule

• Update weights by:

\[w_{ji} = w_{ji} + \eta(t_i - o_i)I_j \]

where \(\eta \) is the “learning rate”

\(I_j \) is the \(j \)th input;
\(O_j \) is the predicted output, and \(t_i \) is the teacher specified output for output \(i \).

• Equivalent to rules:
 – If output is correct do nothing.
 – If output is high, lower weights on active inputs
 – If output is low, increase weights on active inputs

• Also adjust threshold to compensate:

\[T_i = T_i - \eta(t_i - o_i) \]
Perceptron Learning Algorithm

- **Iteratively update weights until convergence.**

 Initialize weights to random values
 Until outputs of all training examples are correct
 For each training pair, E, do:
 - Compute current output o_i for E given its inputs
 - Compare current output to target value, t_i, for E
 - Update synaptic weights and threshold using learning rule

- **Each execution of the outer loop is typically called an *epoch.***
Perceptron as a Linear Separator

- Since perceptron uses linear threshold function, it is searching for a linear separator that discriminates the classes.

$$w_{12}o_2 + w_{13}o_3 > T_1$$

$$o_3 > -\frac{w_{12}}{w_{13}}o_2 + \frac{T_1}{w_{13}}$$

Or hyperplane in n-dimensional space
Perceptron as Hill Climbing

- Perceptron effectively does hill-climbing (gradient descent) in this space, changing the weights and threshold a small amount at each time to decrease training set error.
Perceptron Performance

• Linear threshold functions are restrictive (high bias) but still reasonably expressive.
• In practice, converges fairly quickly for linearly separable data.
• Experimentally, Perceptron does quite well on many benchmark data sets.
Perceptron Limits

• System obviously cannot learn concepts it cannot represent.
• Minsky and Papert (1969) wrote a book analyzing the perceptron and demonstrating many functions it could not learn.
• These results discouraged further research on neural nets; and symbolic AI became the dominate paradigm.
Concept Perceptron Cannot Learn

- Cannot learn exclusive-or, or parity function in general.
Multi-Layer Networks

- Multi-layer networks can represent **arbitrary** functions, but an effective learning algorithm for such networks was thought to be difficult.
- A typical multi-layer network consists of an input, hidden and output layer, each fully connected to the next, with activation feeding forward.
- The weights determine the function computed. Given an arbitrary number of hidden units, any boolean function can be computed with a single hidden layer.
XOR network

\[X_1 \text{ XOR } X_2 = (X_1 \text{ AND NOT } X_2) \text{ OR } (X_2 \text{ AND NOT } X_1) \]

Threshold \((Y) = 2\)

\[
\begin{array}{ccc}
X_1 & X_2 & Y \\
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
\end{array}
\]
Hill-Climbing in Multi-Layer Nets

- To do hill climbing (gradient descent), we need the output of a unit to be a differentiable function of its input and weights.
- Standard linear threshold function is not differentiable at the threshold.
Differentiable Output Function

• Need non-linear output function to move beyond linear functions.
 – A multi-layer linear network is still linear.

• Standard solution is to use the non-linear, differentiable sigmoidal “logistic” function:

\[O_j = \frac{1}{1 + e^{-(net_j - T_j)}} \]
Gradient Descent

• Define objective to minimize error:

\[E(W) = \frac{1}{2} \sum_{d \in D} \sum_{k \in K} (t_{kd} - o_{kd})^2 \]

where \(D \) is the set of training examples, \(K \) is the set of output units, \(t_{kd} \) and \(o_{kd} \) are, respectively, the teacher and current output for unit \(k \) for example \(d \).

• Learning rule to change weights to minimize error is:

\[\Delta w_{ji} = -\eta \frac{\partial E}{\partial w_{ji}} \]
Derivative of Sigmoid Function

• The derivative of a sigmoid unit with respect to an input is:

\[o_j = g(in_j) \]
\[\frac{\partial o_j}{\partial in_j} = o_j(1 - o_j) \]

\[o_j = \frac{1}{1 + e^{-in_j}} \]
Update rule for w_{jk}:

$$E(w) = \frac{1}{2} \sum_{k} \left(t_{k} - y_{k} \right)^{2}$$

$$\frac{\partial E(w)}{\partial w_{jk}} = \sum_{k} (t_{k} - y_{k}) \frac{\partial y_{k}}{\partial w_{jk}}$$

$$= \sum_{k} (t_{k} - y_{k}) \sum_{i} (h_{i} - o_{i}) w_{ij}$$

$$= \sum_{i} \left(\sum_{k} (t_{k} - y_{k}) w_{jk} \right) w_{ij}$$

$$= \sum_{i} (t_{i} - o_{i}) o_{i} (1 - o_{i}) w_{ij}$$

$$\Delta w_{jk} = -\eta \frac{\partial E(w)}{\partial w_{jk}}$$
Update rule for w_{ij}:

$$
\frac{\partial E(w)}{\partial w_{ij}} = (-1) \frac{\partial E(k)}{\partial k} \frac{\partial k}{\partial w_{ij}}
$$

$$
= - \frac{\partial E(k)}{\partial k} \cdot \sum_j \frac{\partial k}{\partial o_j} \cdot \frac{\partial o_j}{\partial w_{ij}}
$$

$$
= - \frac{\partial E(k)}{\partial k} \sum_j \left(\theta_k - o_k \right) \theta_k (1 - \theta_k) \frac{\partial o_j}{\partial w_{ij}}
$$

$$
= - \frac{\partial E(k)}{\partial k} \sum_j \left(\theta_k - o_k \right) \theta_k (1 - \theta_k) \theta_j \frac{\partial o_j}{\partial w_{ij}}
$$

$$
= - \frac{\partial E(k)}{\partial k} \sum_j \left(\theta_k - o_k \right) \theta_k (1 - \theta_k) \theta_j \frac{\partial g(o_i w_j)}{\partial w_{ij}}
$$

$$
= - \frac{\partial E(k)}{\partial k} \sum_j \left(\theta_k - o_k \right) \theta_k (1 - \theta_k) \theta_j \frac{\partial g(o_i w_j)}{\partial w_{ij}}
$$

$$
\frac{\partial w_{ij}}{\partial w_{ij}} = - \frac{\partial E(k)}{\partial k} \sum_j \left(\theta_k - o_k \right) \theta_k (1 - \theta_k) \theta_j \frac{\partial g(o_i w_j)}{\partial w_{ij}}
$$
Backpropagation Learning Rule

- Each weight changed by:

\[\Delta w_{ij} = \eta \delta_j o_i \]

\[\delta_j = o_j (1-o_j) (t_j - o_j) \quad \text{if } j \text{ is an output unit} \]

\[\delta_j = o_j (1-o_j) \sum_k \delta_k w_{jk} \quad \text{if } j \text{ is a hidden unit} \]

where \(\eta \) is a constant called the learning rate
\(\delta_j \) is the error measure for unit \(j \)
Error Backpropagation

• First calculate error of output units and use this to change the top layer of weights.

Current output: \(o_j = 0.2 \)
Correct output: \(t_j = 1.0 \)
Error \(\delta_j = o_j(1-o_j)(t_j-o_j) = 0.2(1-0.2)(1-0.2) = 0.128 \)

Update weights into \(j \)
\[\Delta w_{ij} = \eta \delta_j o_i \]
Error Backpropagation

• Next calculate error for hidden units based on errors on the output units it feeds into.

$$\delta_j = o_j (1 - o_j) \sum_k \delta_k w_{jk}$$
Error Backpropagation

- Finally update bottom layer of weights based on errors calculated for hidden units.

\[\delta_j = o_j(1-o_j)\sum_k \delta_k w_{jk} \]

Update weights into j

\[\Delta w_{ij} = \eta \delta_j o_i \]
Backpropagation Training Algorithm

Create the 3-layer network with H hidden units with full connectivity between layers. Set weights to small random real values.
Until all training examples produce the correct value (within \(\varepsilon \)), or mean squared error ceases to decrease, or other termination criteria:

Begin epoch
For each training example, d, do:
 Calculate network output for d’s input values
 Compute error between current output and correct output for d
 Update weights by backpropagating error and using learning rule
End epoch
Comments on Training Algorithm

• May converge to local optima or oscillate indefinitely. However, in practice, does converge to low error for many large networks on real data.

• Many epochs (thousands) may be required, hours or days of training for large networks.

• To avoid local-minima problems, run several trials starting with different random weights (*random restarts*).
 – Take results of trial with lowest training set error.
 – Build a committee of results from multiple trials (possibly weighting votes by training set accuracy).

• Neural Networks are prone to overfitting.
Hidden Unit Representations

- Trained hidden units can be seen as newly constructed features that make the target concept linearly separable in the transformed space.
- On many real domains, hidden units can be interpreted as representing meaningful features such as vowel detectors or edge detectors, etc.
- But often times the non-linearities in the feature extraction can make interpretation of the hidden layers very difficult.
- This leads to Neural Networks being treated as black boxes.
Successful Applications

• Text to Speech (NetTalk)
• Fraud detection
• Financial Applications
 – HNC (eventually bought by Fair Isaac)
• Chemical Plant Control
 – Pavillion Technologies
• Automated Vehicles
• Game Playing
 – Neurogammon
• Handwriting recognition