Lecture 2: Decision Trees

Machine Learning
Queens College
Today

• Decision Trees
 – Entropy and Information Theory
 – Information Gain
 – “Purity” or “Classification Accuracy”
Decision Trees

- Trees that define a decision process
 - Internal nodes: questions associated with a specific feature
 - Leaves: Decisions

- Want a fast meal?
 - Yes
 - How about coffee?
 - Yes: Starbucks
 - No: McDonald’s
 - No
 - On expense account?
 - Yes: 21 Club
 - No: T.G.I. Friday’s
• Very easy to evaluate.
• Nested if statements
More formal Definition of a Decision Tree

• A **Tree** data structure
• Each **internal node** corresponds to a feature
• **Leaves** are associated with target values.
• Nodes with **nominal features** have \(N \) children, where \(N \) is the number of nominal values
• Nodes with **continuous features** have two children for values less than and greater than or equal to a **break point**.
Training a Decision Tree

• How do you decide what feature to use?
• For continuous features how do you decide what break point to use?

• Goal: Optimize Classification Accuracy.
Example Data Set

<table>
<thead>
<tr>
<th>Height</th>
<th>Weight</th>
<th>Eye Color</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>170</td>
<td>Blue</td>
<td>Male</td>
</tr>
<tr>
<td>73</td>
<td>210</td>
<td>Brown</td>
<td>Male</td>
</tr>
<tr>
<td>72</td>
<td>165</td>
<td>Green</td>
<td>Male</td>
</tr>
<tr>
<td>70</td>
<td>180</td>
<td>Blue</td>
<td>Male</td>
</tr>
<tr>
<td>74</td>
<td>185</td>
<td>Brown</td>
<td>Male</td>
</tr>
<tr>
<td>68</td>
<td>155</td>
<td>Green</td>
<td>Male</td>
</tr>
<tr>
<td>65</td>
<td>150</td>
<td>Blue</td>
<td>Female</td>
</tr>
<tr>
<td>64</td>
<td>120</td>
<td>Brown</td>
<td>Female</td>
</tr>
<tr>
<td>63</td>
<td>125</td>
<td>Green</td>
<td>Female</td>
</tr>
<tr>
<td>67</td>
<td>140</td>
<td>Blue</td>
<td>Female</td>
</tr>
<tr>
<td>68</td>
<td>165</td>
<td>Brown</td>
<td>Female</td>
</tr>
<tr>
<td>66</td>
<td>130</td>
<td>Green</td>
<td>Female</td>
</tr>
</tbody>
</table>
Baseline Classification Accuracy

• Select the majority class.
 – Here 6/12 Male, 6/12 Female.
 – Baseline Accuracy: 50%

• How good is each branch?
 – The improvement to classification accuracy
Training Example

• Possible branches

```
<table>
<thead>
<tr>
<th>color</th>
<th>blue</th>
<th>brown</th>
<th>green</th>
</tr>
</thead>
<tbody>
<tr>
<td>M/F</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>Height</th>
<th>Weight</th>
<th>Eye Color</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>125</td>
<td>Green</td>
<td>Female</td>
</tr>
<tr>
<td>64</td>
<td>120</td>
<td>Brown</td>
<td>Female</td>
</tr>
<tr>
<td>65</td>
<td>150</td>
<td>Blue</td>
<td>Female</td>
</tr>
<tr>
<td>66</td>
<td>170</td>
<td>Blue</td>
<td>Male</td>
</tr>
<tr>
<td>66</td>
<td>130</td>
<td>Green</td>
<td>Female</td>
</tr>
<tr>
<td>67</td>
<td>140</td>
<td>Blue</td>
<td>Female</td>
</tr>
<tr>
<td>68</td>
<td>165</td>
<td>Brown</td>
<td>Female</td>
</tr>
<tr>
<td>68</td>
<td>155</td>
<td>Green</td>
<td>Male</td>
</tr>
<tr>
<td>70</td>
<td>180</td>
<td>Blue</td>
<td>Male</td>
</tr>
<tr>
<td>72</td>
<td>165</td>
<td>Green</td>
<td>Male</td>
</tr>
<tr>
<td>73</td>
<td>210</td>
<td>Brown</td>
<td>Male</td>
</tr>
<tr>
<td>74</td>
<td>185</td>
<td>Brown</td>
<td>Male</td>
</tr>
</tbody>
</table>
Training Example

- Possible branches

\[
\begin{align*}
\text{height} \\
<68 &\quad 1M / 5F \\
&\quad 5M / 1F
\end{align*}
\]

50% Accuracy before Branch

83.3% Accuracy after Branch

33.3% Accuracy Improvement
Weight

<table>
<thead>
<tr>
<th>Height</th>
<th>Weight</th>
<th>Eye Color</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>120</td>
<td>Brown</td>
<td>Female</td>
</tr>
<tr>
<td>63</td>
<td>125</td>
<td>Green</td>
<td>Female</td>
</tr>
<tr>
<td>66</td>
<td>130</td>
<td>Green</td>
<td>Female</td>
</tr>
<tr>
<td>67</td>
<td>140</td>
<td>Blue</td>
<td>Female</td>
</tr>
<tr>
<td>65</td>
<td>150</td>
<td>Blue</td>
<td>Female</td>
</tr>
<tr>
<td>68</td>
<td>155</td>
<td>Green</td>
<td>Male</td>
</tr>
<tr>
<td>68</td>
<td>165</td>
<td>Brown</td>
<td>Female</td>
</tr>
<tr>
<td>72</td>
<td>165</td>
<td>Green</td>
<td>Male</td>
</tr>
<tr>
<td>66</td>
<td>170</td>
<td>Blue</td>
<td>Male</td>
</tr>
<tr>
<td>70</td>
<td>180</td>
<td>Blue</td>
<td>Male</td>
</tr>
<tr>
<td>74</td>
<td>185</td>
<td>Brown</td>
<td>Male</td>
</tr>
<tr>
<td>73</td>
<td>210</td>
<td>Brown</td>
<td>Male</td>
</tr>
</tbody>
</table>
Training Example

• Possible branches

- weight
 - <155
 - 0M / 5F
 - 50% Accuracy before Branch
 - 91.7% Accuracy after Branch
 - 41.7% Accuracy Improvement
 - 6M / 1F
Training Example

• Recursively train child nodes.
Training Example

• Finished Tree

- **color**
 - blue
 - brown
 - green

- **height**
 - <70
 - 2M / 1F
 - >70
 - 6M / 1F

- **weight**
 - <155
 - 5F
 - >155
 - 4M
Generalization

• What is the performance of the tree on the training data?
 – Is there any way we could get less than 100% accuracy?

• What performance can we expect on unseen data?
Evaluation

• Evaluate performance on data that was not used in training.
• Isolate a subset of data points to be used for evaluation.
• Evaluate generalization performance.
Evaluation of our Decision Tree

• What is the Training performance?
• What is the Evaluation performance?
 – Never classify female over 165
 – Never classify male under 165, and under 68.
 – The middle section is trickier.
• What are some ways to make these similar?
Pruning

- There are many pruning techniques.
- A simple approach is to have a minimum membership size in each node.
Decision Trees

- Training via **Recursive Partitioning**.
- Simple, interpretable models.
- Different node selection criteria can be used.
 - Information theory is a common choice.
- Pruning techniques can be used to make the model more robust to unseen data.
Entropy and Information Theory

• Entropy is a measure of how homogenous a data set is.
 – Also how even a probability distribution or a random variable is.
• The unit of Entropy is the bit.
• Under an Information Theory perspective entropy represents the fewest bits it would take on average to transmit information in a signal (i.e. a random variable)
Entropy

• Say I have a vocabulary of 4 items.
 – A, B, C, D.

• A standard encoding of these might be
 – 00, 01, 10, 11.

• 2 bits per vocabulary item.

• However, if A is much more common, it might be more efficient to use this coding
 – 0, 10, 111, 110

• Exercise: What is the average bit length if there are 150 As, 40 Bs, 5 Cs, and 5Ds?

\[
\frac{150 \times 1 + 40 \times 2 + 5 \times 3 + 5 \times 3}{250} = \frac{250}{250} = 1.3
\]
Calculating Entropy

\[H(X) = - \sum_{i \in X} p_i \log p_i \]

- Where \(p_i \) is the probability of selecting the ith value.
- For example, say \(X = \{A A A B B B B B B\} \)
- In the calculation of entropy \(0 \log 0 = 0 \)

\[H(X) = - \left(\frac{3}{8} \log \frac{3}{8} + \frac{5}{8} \log \frac{5}{8} \right) \]
Information Gain

• In our previous example we examined the improvement to classification performance.
 – Error reduction or change to overall accuracy.

• Using entropy the measure that is optimized is Information Gain.
 – The difference in the entropy of the label or class distribution before or after a particular decision tree split.
Calculating Information Gain

$$Gain(S, F) = H(S) - \sum_{f \in \text{values}(F)} \frac{|S_f|}{|S|} H(S_f)$$

$$H(S) = -\frac{3}{4} \log_2 \frac{3}{4} - \frac{1}{4} \log_2 \frac{1}{4}$$

$$H(S_{VW}) = -\frac{1}{4} \log_2 \frac{1}{4} - \frac{1}{2} \log_2 \frac{1}{2} = 0$$

$$H(S_{Ford}) = -\frac{1}{4} \log_2 \frac{1}{4} - \frac{1}{2} \log_2 \frac{1}{2} = 1$$

$$H(S_{BMW}) = -\frac{1}{4} \log_2 \frac{1}{4} - \frac{1}{2} \log_2 \frac{1}{2} = 0$$

$$Gain(S, F) = H(S) - \frac{1}{4} \times 0 - \frac{3}{4} \times 1 - \frac{1}{4} \times 0 = 0$$
Calculating Information Gain

\[\text{Gain}(S, F) = H(S) - \sum_{f \in \text{values}(F)} \frac{|S_f|}{|S|} H(S_f) \]

Identify the feature with the greatest Information Gain and repeat this process recursively!
Visualization of Decision Tree Training
Next Time: Math Primer

- Probability
 - Bayes Rule
 - Naïve Bayes Classification

- Statistics
 - Normal Distribution
 - Multinomial Distribution