Chapter 7
Quicksort

• Many of the slides were provided by the publisher for use with the textbook. They are copyrighted, 2001.

• These slides are for classroom use only, and may be used only by students in this specific course this semester. They are NOT a substitute for reading the textbook!
Chapter 7 Topics

• What is quicksort?
• How does it work?
• Performance of quicksort
• Randomized version of quicksort
Description of Quicksort

- Quicksort is another divide-and-conquer algorithm.
- Basically, what we do is divide the array into two subarrays, so that all the values on the left are smaller than the values on the right.
- We repeat this process until our subarrays have only 1 element in them.
- When we return from the series of recursive calls, our array is sorted.
Description of Quicksort

• **Divide:** Partition $A[p..r]$ into two (possibly empty) subarrays $A[p..q-1]$ and $A[q+1..r]$ such that each element of $A[p..q-1] \leq A[q]$ and $A[q] \leq$ each element of $A[q+1..r]$. Compute the index q as part of this partitioning procedure.

• **Conquer:** Sort the two subarrays by recursive calls to quicksort.

• **Combine:** Since the subarrays are sorted in place, no work is needed to combine them: $A[p..r]$ is now sorted.
The Quicksort Algorithm

QUICKSORT(A,p,r)
1 if p < r
2 then q ← PARTITION(A,p,r)
3 QUICKSORT(A,p,q-1)
4 QUICKSORT(A,q+1,r)

Initial call:
QUICKSORT(A,1, length[A])
The Partition Algorithm

PARTITION(A, p, r)
1 \(x \leftarrow A[r] \)
2 \(i \leftarrow p - 1 \)
3 for \(j \leftarrow p \) to \(r-1 \)
4 do if \(A[j] \leq x \)
5 then \(i \leftarrow i + 1 \)
6 exchange \(A[i] \leftrightarrow A[j] \)
7 exchange \(A[i+1] \leftrightarrow A[r] \)
8 return \(i+1 \)
PARTITION(A,p,r)

\[x \leftarrow A[r] \]
\[i \leftarrow p - 1 \]
for j ← p to r-1
do if A[j] ≤ x then
\[i \leftarrow i + 1 \]
return i+1
Regions of Subarray Maintained by PARTITION

Each value in $A[p..i] \leq x$.
Each value in $A[i+1..j-1] > x$.
$A[r] = x$.
$A[j..r-1]$ can take on any values.
We can prove the correctness of the Partition algorithm by an analysis of its loop invariant conditions:

At the beginning of each iteration of the loop in lines 3-6, for any array index k,

1. if $p \leq k \leq i$, then $A[k] \leq x$.
2. if $i + 1 \leq k \leq j - 1$, then $A[k] > x$.
3. if $k = r$, then $A[k] = x$.
Loop Invariant Correctness

Initialization:

- Prior to the first iteration of the loop, \(i = p - 1 \), and \(j = p \). There are no values between \(p \) and \(i \), and no values between \(i + 1 \) and \(j - 1 \), so the first two conditions of the loop invariant are trivially satisfied. The assignment in line 1 satisfies the third condition.
Loop Invariant Correctness

Maintenance:

• There are two cases to consider depending on the outcome of the test in line 4:
• When \(A[j] > x \), the only action in the loop is to increment \(j \). After \(j \) is incremented, condition 2 holds for all \(A[j-1] \) and all other entries remain unchanged.
• When \(A[j] \leq x \), \(i \) is incremented, \(A[i] \) and \(A[j] \) are swapped, and then \(j \) is incremented. Because of the swap, we now have that \(A[i] \leq x \), and condition 1 is satisfied. Similarly, we also have that \(A[j-1] > x \), since the item that was swapped into \(A[j-1] \) is, by the loop invariant, greater than \(x \).
Figure 7.3 The two cases for one iteration of procedure PARTITION. (a) If $A[j] > x$, the only action is to increment j, which maintains the loop invariant. (b) If $A[j] \leq x$, index i is incremented, $A[i]$ and $A[j]$ are swapped, and then j is incremented. Again, the loop invariant is maintained.
Loop Invariant Correctness

Termination:

At termination, $j = r$. Therefore, every entry in the array is in one of the three sets described by the invariant, and we have partitioned the values in the array into three sets:

- those less than or equal to x,
- those greater than x, and
- a singleton set containing x.
Performance of Quicksort

• Depends on whether the partitioning is balanced or unbalanced:
 – Balance of partition depends on location of pivot
 – If balanced, runs as fast as Merge sort
 – If unbalanced, runs as slowly as Insertion sort
Worst/Best case partitioning

– Worst case:
 • One partition contains n – 1 elements
 • The other partition contains 1 element

– Best case:
 • Both partitions are of equal size
Worst case partitioning

\[
\begin{align*}
&n \\
&\quad \downarrow \\
&1 \quad n-1 \\
&\quad \downarrow \quad \downarrow \\
&1 \quad n-2 \\
&\quad \downarrow \quad \downarrow \\
&1 \quad n-3 \\
&\quad \downarrow \quad \downarrow \\
&1 \quad 2 \\
&\quad \downarrow \quad \downarrow \\
&1 \quad 1 \\
&\quad \downarrow \quad \downarrow \\
&1 \\
\end{align*}
\]

Total of $\Theta(n^2)$
Worst Case Performance

Assume we have a maximally unbalanced partition at each step, splitting off just 1 element from the rest each time. This means we will have to call Partition n-1 times.

The cost of Partition is: $\Theta(n)$

So the recurrence for Quicksort is:

$$T(n) = T(n-1) + T(0) + \Theta(n)$$

$$= T(n-1) + \Theta(n)$$
Worst Case Performance

We can solve the recurrence by iteration:

\[T(n) = \Theta(n) + T(n-1) \]

\[= \Theta(n) + \Theta(n-1) + \Theta(n-2) + \ldots + \Theta(1) \]

\[= \sum_{k=1}^{n} \Theta(k) \]

\[= \Theta\left(\sum_{k=1}^{n} k \right) \]

\[= \Theta(n^2) \]
Best Case

Best case: Each time the partitioning is done, it splits the array into two regions of equal size. After each call to Partition, each subarray contains \(\frac{n}{2} \) of the elements from the previous call. If we halve the remaining elements each time, we will have to call Partition \(\log_2 n \) times.
Best Case Performance

Best case: Call Partition, which splits the array into two equal-size subarrays. For each of the 2 subarrays, call Partition, which splits ...

Recurrence for Quicksort:

\[T(n) \leq 2T(n/2) + \Theta(n) \]

This matches Master Method case 2. Solving the recurrence we get:

\[T(n) = O(n \log n) \]
Average Case

- Average case analysis is complex and difficult.
- However, we can observe that average-case performance is much closer to best-case than worst case.
- Suppose split is always 9-to-1
- Recurrence:
 \[T(n) \leq T(9n/10) + T(n/10) + \Theta(n) \]
 \[= T(9n/10) + T(n/10) + cn \]
 \[= \log_{10/9} n \times n = O(n \lg n) \]
Average Case Analysis

\[O(n \log n) \]
Average Case Analysis

• What if we have a 99-1 split?
• We still have a running time of $O(n \lg n)$
• Any split of constant proportionality yields a recursion tree of depth $\Theta(\lg n)$, where the cost at each level is $O(n)$.
• So whenever the split is of constant proportionality, Quicksort performs on the order of $O(n \lg n)$.
Average Case

- Best case:
 \[2T(n/2) + \Theta(n)\]

- Average case example:
 \[T(9n/10) + T(n/10) + cn\]

- Worst case:
 \[T(n-1) + \Theta(n)\]
Randomized Version of Quicksort

• When an algorithm has an average case performance and worst case performance that are very different, we can try to minimize the odds of encountering the worst case.

• We can:
 – Randomize the input
 – Randomize the algorithm
Randomized Version of Quicksort

• Randomizing the input
 With a given set of input numbers, there are very few permutations that produce the worst-case performance in Quicksort.
 We can randomly permute the numbers in a n-element array in $O(n)$ time.
 For Quicksort, add an initial step to randomize the input array.
 Running time is now independent of input ordering.
Randomized Version of Quicksort

• Randomizing the algorithm:

In standard Quicksort, the worst case is encountered when we choose a bad pivot. If the input array is already sorted (or inverse sorted), we will always pick a bad pivot. But if we pick our pivot randomly, we will rarely get a bad pivot. So, randomly choose a pivot element in $A[p..r]$. Running time is now independent of input ordering.
Randomized Partition

RANDOMIZED-PARTITION (A, p, r)
1 i ← RANDOM (p, r)
3 return PARTITION (A, p, r)
Randomized Quicksort

RANDOMIZED-QUICKSORT (A, p, r)
1 if p < r
2 then q ← RANDOMIZED-PARTITION (A, p, r)
3 RANDOMIZED-QUICKSORT (A, p, q-1)
4 RANDOMIZED-QUICKSORT (A, q+1, r)
Conclusion

Quicksort runs $O(n \log n)$ in the best and average case, but $O(n^2)$ in the worst case. Worst case scenarios for Quicksort occur when the array is already sorted, in either ascending or descending order. We can increase the probability of obtaining average-case performance from Quicksort by using Randomized-partition.